\$20,000. Cameras such as these can acquire high quality oblique photographs from ranges of up to several kilometres which would be useful in an Open Skies context (Figure 10).

Specialized long-range oblique photography (LOROP) systems may be used to take oblique photographs from distances as much as 200 kilometres away from the target. These systems can acquire superb photographs with very fine spatial detail. However, LOROP systems might not be required or appropriate for Open Skies under normal circumstances:

- Overflights under Open Skies are to be conducted with the permission of the underlying State. The stand-off distances made possible with these sophisticated systems might not actually be required very often for Open Skies.
- Aircraft to be used for Open Skies may be subject to inspection by personnel of the underlying State and those personnel may accompany the aircraft during the overflight. LOROP systems make use of sensitive technology which could be compromised if they were used for Open Skies.
- a LOROP system can cost as much as \$1 million with installation in an aircraft.

Multilens and panoramic systems

Military reconnaissance requirements have led to aerial cameras which are intended to provide coverage of a large area with only one overpass of the aircraft. These include panoramic and multilens systems. Panoramic systems provide horizon-to-horizon coverage with very fine detail. These camera systems produce characteristically distorted photos which make measurements from the photographs more difficult, but which does not seriously hinder an interpreter's ability to identify targets. Along-track frames of multilens

Horst L. Pientka, Linhof Präzisions-Kamera-Werke GMBH. Personal communication.