Notes applicable to Table – Deposition Techniques:

- The term 'coating process' includes coating repair and refurbishing as well as original coating.
- The term 'alloyed aluminide coating' includes single or multiple-step coatings 2 in which an element or elements are deposited prior to or during application of the aluminide coating, even if these elements are deposited by another coating process. It does not, however, include the multiple use of single-step pack cementation processes to achieve alloyed aluminides.
- The term 'noble metal modified aluminide' coating includes multiple-step 3. coatings in which the noble metal or noble metals are laid down by some other coating process prior to application of the aluminide coating.
- Mixtures consist of infiltrated material, graded compositions, co-deposits and multilayer deposits and are obtained by one or more of the coating processes specified in the Table.
- MCrAIX refers to a coating alloy where M equals cobalt, iron, nickel or 5. combinations thereof and X equals hafnium, yttrium, silicon, tantalum in any amount or other intentional additions over 0.01 weight percent in various proportions and combinations, except:
 - a. CoCrAIY coatings which contain less than 22 weight percent of chromium, less than 7 weight percent of aluminium and less than 2 weight percent of yttrium;
 - b. CoCrAIY coatings which contain 22 to 24 weight percent of chromium, 10 to 12 weight percent of aluminium and 0.5 to 0.7 weight percent of yttrium; or
 - C. NiCrAIY coatings which contain 21 to 23 weight percent of chromium, 10 to 12 weight percent of aluminium and 0.9 to1.1 weight percent of vttrium.
- 6. The term 'aluminium alloys' refers to alloys having an ultimate tensile strength of 190 MPa or more measured at 293 K (20°C).
- The term 'corrosion resistant steel' refers to AISI (American Iron and Steel 7. Institute) 300 series or equivalent national standard steels.
- 8. Refractory metals consist of the following metals and their alloys: niobium (columbium), molybdenum, tungsten and tantalum.
- 9. Sensor window materials, as follows: alumina, silicon, germanium, zinc sulphide, zinc selenide, gallium arsenide and the following metal halides: potassium iodide, potassium fluoride, or sensor window materials of more than 40 mm diameter for thallium bromide and thallium chlorobromide.
- Technology for single-step pack cementation of solid airfoils is not 10. embargoed by Category 1020.
- 11. Polymers, as follows: polyimide, polyester, polysulphide, polycarbonates and polvurethanes.
- Modified zirconia refers to additions of other metal oxides, e.g. calcia, 12. magnesia, yttria, hafnia, rare earth oxides, etc., to zirconia in order to stabilise certain crystallographic phases and phase compositions. Thermal barrier coatings made of zirconia, modified with calcia or magnesia by mixing or fusion, are not embargoed.
- 13. Titanium alloys refers to aerospace alloys having an ultimate tensile strength of 900 MPa or more measured at 293 K (20°C).
- 14. Low-expansion glasses refers to glasses which have a coefficient of thermal expansion of 1 x 10^7 K¹ or less measured at 293 K (20°C).
- 15. Dielectric layers are coatings constructed of multi-layers of insulator materials in which the interference properties of a design composed of materials of various refractive indices are used to reflect, transmit or absorb various wavelength bands. Dielectric layers refers to more than four dielectric layers or dielectric/metal "composite" lavers.
- 16. Cemented tungsten carbide does not include cutting and forming tool materials consisting of tungsten carbide/(cobalt, nickel), titanium carbide/(cobalt, nickel), chromium carbide/nickel-chromium and chromium carbide/nicke

Technical Notes to Table – Deposition Techniques:

Processes specified in Column 1 of the Table are defined as follows:

Chemical Vapour Deposition (CVD) is an overlay coating or surface a. modification coating process wherein a metal, alloy, "composite", dielectric or ceramic is deposited upon a heated substrate. Gaseous reactants are decomposed or combined in the vicinity of a substrate resulting in the deposition of the desired elemental, alloy or compound material on the substrate. Energy for this decomposition or chemical reaction process may be provided by the heat of the substrate, a glow discharge plasma, or "laser" irradiation.

N.B .:

- 1. CVD includes the following processes: directed gas flow out-of-pack deposition, pulsating CVD, controlled nucleation thermal decomposition (CNTD), plasma enhanced or plasma assisted CVD processes.
- 2 Pack denotes a substrate immersed in a powder mixture.
- The gaseous reactants used in the out-of-pack process are produced 3 using the same basic reactions and parameters as the pack cementation process, except that the substrate to be coated is not in contact with the powder mixture.
- Thermal Evaporation-Physical Vapour Deposition (TE-PVD) is an overlay b. coating process conducted in a vacuum with a pressure less than 0.1 Pa wherein a source of thermal energy is used to vaporize the coating material. This process results in the condensation, or deposition, of the evaporated species onto appropriately positioned substrates.

The addition of gases to the vacuum chamber during the coating process to synthesize compound coatings is an ordinary modification of the process. The use of ion or electron beams, or plasma, to activate or assist the coating's deposition is also a common modification in this technique. The use of monitors to provide in-process measurement of optical characteristics and thickness of coatings can be a feature of these processes. Specific TE-PVD processes are as follows:

- Electron Beam PVD uses an electron beam to heat and evaporate the material which forms the coating:
- 2 Resistive Heating PVD employs electrically resistive heating sources capable of producing a controlled and uniform flux of evaporated coating species:
- 3. "Laser" Evaporation uses either pulsed or continuous wave "laser" beams to heat the material which forms the coating:
- 4. Cathodic Arc Deposition employs a consumable cathode of the material which forms the coating and has an arc discharge established on the surface by a momentary contact of a ground trigger. Controlled motion of arcing erodes the cathode surface creating a highly ionized plasma. The anode can be either a cone attached to the periphery of the cathode, through an insulator, or the chamber. Substrate biasing is used for non line-of-sight deposition. N.B.:

This definition does not include random cathodic arc deposition with non-biased substrates.

Ion Plating is a special modification of a general TE-PVD process in which a plasma or an ion source is used to ionize the species to be deposited, and a negative bias is applied to the substrate in order to facilitate the extraction of the species to be deposited from the plasma. The introduction of reactive species, evaporation of solids within the process chamber, and the use of monitors to provide in-process measurement of optical characteristics and thicknesses of coatings are ordinary modifications of the process.

d. Pack Cementation is a surface modification coating or overlay coating process wherein a substrate is immersed in a powder mixture (a pack), that consists of:

- The metallic powders that are to be deposited (usually aluminium, 1. chromium, silicon or combinations thereof);
- 2. An activator (normally a halide salt); and
- An inert powder, most frequently alumina. 3. The substrate and powder mixture is contained within a retort which is heated to between 1,030 K (757°C) and 1,375 K (1,102°C) for sufficient time to deposit the coating.
- e. Plasma Spraying is an overlay coating process wherein a gun(spray torch) which produces and controls a plasma accepts powder or wire coating materials, melts them and propels them towards a substrate, whereon an integrally bonded coating is formed. Plasma spraying constitutes either low pressure plasma spraying or high velocity plasma spraying carried out underwater.

N.B.:

С.

- Low pressure means less than ambient atmospheric pressure.
- 2 High velocity refers to nozzle-exit gas velocity exceeding 750 m/s calculated at 293 K (20°C) at 0.1 MPa.
- Slurry Deposition is a surface modification coating or overlay coating process wherein a metallic or ceramic powder with an organic binder is suspended in a liquid and is applied to a substrate by either spraying, dipping or painting, subsequent air or oven drying, and heat treatment to obtain the desired coating.