atmosphere or that the suspension of soot at ambient levels $(<10 \text{ ug/m}^3)$ in aerosols, cloud droplets or rain is similar to the laboratory system.

2.3.4.4 <u>S(IV) - Dissolved Oxidants - H₂O</u>-- Hydrogen peroxide, ozone, and nitrogen dioxide may be important in the oxidation of SO₂ in aqueous aerosols and fogs. Although these compounds do not demonstrate high reactivity toward SO₂ in air, their reactivity is enhanced in the liquid phase. Again, caution is advised in accepting the results of studies of two-phase systems in which the investigators have not completely accounted for the possibility of the mass transport limitation of the oxidation rate. Therefore, only the recent results for single-phase systems are discussed here.

Martin et al. (1981) have used a stopped-flow reactor to investigate the kinetics of oxidation of aqueous SO_2 species by aqueous NO, NO_2^- , and NO_3^- . Over the pH range of 0.6 to 3.2, they found for NO and NO_3^- that the disappearance of S(IV) species is:

> $\frac{d[S(IV)]}{dt} = k [NO \text{ or } NO_3^{-}][S(IV)] \qquad (2-33)$ $\frac{dt}{k} \leq 0.01 \text{ mole } 1^{-1} \text{sec}^{-1}$

However, for the same conditions, the reaction with NO₂⁻ is rapid and the formation of SO_4^{2-} can be expressed as: $-\frac{d[SO_4^{2-}]}{dt} = k_1[H^+]^{0.5} [HNO_2 + NO_2] [SO_2.H_2^{0} + HSO_3] k_1 = 142 (liter/mole)^{1.5}sec^{-1} (2-34)$ IEAL

ÎST

TEAN

TEAC

IBAT

Î E I

IEIT

NEGE

NEW

TENT

IEST

TEST