ASBESTOS.

THERE is probably no production of inorganic nature about which there is so much popular mystery and misconception as asbestos. It is vaguely understood that the principal claim of this remarkable product to attention is that it cannot be consumed by fire, and not infrequently the effect of the mention of asbestos is to carry the hearer back to the days when the people of the Pharaolis wrapped their dead in cere-cloths, woven from fibre, in order to preserve them, the body having been first embalmed. Romantic stories have also come down to us of ancient demonstrations of magic in which asbestos has played the leading part, but the real interest in asbestos centres in the present. It is of more importance to the human race to-day than it has been in the whole range of history. Asbestos twenty-five years ago was practically not known in the laboratory of the chemist or mineralogist. It now finds its way in one form or another into every workshop where steam is employed.

To the question, "What is asbestos? It is not altogether easy to find an answer. Geologists classify it among the hornblends, In itself, asbestos is a physical paradox, a mineralogical vegetable, both fibrous and crystalline, elastic yet brittle, a floating stone, but as capable of being carded, spun and woven as flax, cotton or silk. It is apparently a connecting link between the vegetable and the mineral kingdom, possessing some of the characteristics of both. In appearance it is light, baoyant and feathery as thistledown; yet, in its crude state, it is dense and heavy as the solid rock in which it is found. Apparently as perishable as grass, it is yet older than any order of animal or vegetable life on earth. The dissolving influences of time seem to have no effect upon it. The action of unnumbered centuries, by which the hardest rocks known to geologists are worn away, has left no perceptible imprint on the asbestos found embedded in them. While much of its bulk is of the roughest and most gritty materials known, it is really as smooth to the touch as soap or oil. Seemingly as combustible as tow, the fiercest heat cannot consume it, and no known combination of acids will destructively affect the appearance and strength of its fibre, even after days of its action. It is, in fact, practically indestructible. Its incombustible nature renders it a complete protection from flames, but beyond this most valuable quality, its industrial value is greatly augmented by its non-conduction of heat and electricity, as well as by its important propriety of practical insolubility in acids,

Asbestos has been found in all quarters of the globe. It comes from Italy, China, Japan, Australia, Spam, Portugal, Hungary, Germany, Russia, The Cape, Central Africa, Canada (Fig. 1), Newfoundland, this country, and from Southern and Central America.

Notwithstanding this wide distribution of asbestos, the only varieties which at present appear to demand serious consideration, from a commercial point of view, are the Russian, the South African, the Italian and the Canadian.

Before the development of the Canadian fields, the Italian

FIG. 1.-CANADIAN ASBESTOS.

asbestos was supreme in the market. For nearly twenty years Italy has been looked to for the best grades of the fibre. From a point on the northern mountain slope of the Susa valley is taken the floss asbestos fibre, the appearance of which in gas stoves is so familiar. In the same locality is found a fine white powder of asbestos, which serves for paint and other purposes. The mining is carried on at a height of from 6,000 to 10,000 feet above sea level.

But the Italian asbestos industry, once so important, is already on the down grade. The difficulties of mining are very great, and unduly increase the cost of production. The asbestos itself, judged by the latest standards, is of inferior quality; it is not easy to spin, and it does not pulp well in the making of paper. The best grade is extremely rare, and its cost of mining and transportation is prohibitive. The supply from the Italian mines is rapidly falling off. As a matter of fact, Canada contains the great asbestos region of the world, in the sense that while its mines are practically unlimited to productive capacity, the product is of a quality which fully meets the requirements of the newest and most exacting of the innumerable uses that are daily being found for it.

The process of manufacture is intensely interesting, more especially from the fact that as the industry is constantly entering upon novel physes, new methods of treatment and special machinery have to be devised. One of its special uses is for wall paper.

One of the largest branches of asbestos manufacture is that of sectional cylinders for pipe coverings, for retaining the heat of steam and other pipes, full protective coverings for boilers, frost-

Fig. 2. - Asbestos Mining.

proof protections for gas or water pipes, and cement filling, which can be laid on with a trowel, for the covering of steam pipes, boilers or sills. In some of these cases, where it is only necessary to retain the heat, the asbestos is mixed with other substances; but where the protection must be fireproof as well, only ashestos is used. The utility of such covering is well illustrated in the heating system of railway ears. The main pipe from which the individual cars draw their respective heat supplies by side mains, if not covered with asbestos, would lose a large proportion of its caloric from the rapid motion of the car through the air. An interesting innovation in this class of manufacture is asbestos sponge. It is not generally known that sponge has great powers of fire resistance. The discovery was made accidentally not long ago, and the result was that a consignment of scraps of sponge picked up on the Southern coasts was ordered for experimental purposes. The sponge was finely comminuted and mixed intimately with asbestos fibre. The combination was found so successful for any covering which had to be fireproof as well as heatproof that the material has become standard. Being full of air cells, it necessarily makes an excellent non-conductor. Another very extensive department in asbestos manufacture is that of packings. Of these there are an infinite number of forms. In these days of high pressures and ocean records, it is of supreme importance to marine engineers that they should have jointing and packing materials on which absolute reliance can be placed. In order to meet modern exigencies every possible form of packing has been constructed, particularly with asbestos and metallic wire, and with asbestos and rubber cores for gland packing. The making of asbestos paper varies from the building up of the thickest millboard to the production of a writing paper which, from its indestructibility, is valuable in case of fire for preserving charters, policies, agreements and other important documents.

To the electrical engineer asbestos is absolutely indispensable. Many parts of electrical devices and machinery and wires through which the electrical current passes become heated, and were it not for the electrical insulation and heat-resisting qualities which asbestos possesses, the apparatus would be completely destroyed, particularly in the case known to electricians as "short circuiting." For such purpose it has been found advisable to combine asbestos with rubber and other gums, and this combination is now