For take ϕ , the general symbol under which are included all the particular terms in the series (1); and let the n^{th} power of ϕ , (n being a whole number), arranged so as to satisfy the conditions of Def. 8, be,

$$\phi_n = a + a_1 t_1 + a_2 t_2 + \&c.$$
(3)

where the coefficients, a, a_1 , &c., are rational; and each of the terms, t_1 , t_2 , &c., is either some power of an integral surd, or the continued product of several such powers. Suppose y_1^r to be one of the factors of t_1 ; the index of the surd y_1 being $\frac{1}{\lambda}$; and let the

several λ^{th} roots of unity be, 1, z, z^2 ,, $z^{\lambda-1}$. Then, from (3), $\phi_1^{\text{n}} = a + a_1 v_1 + a_2 v_2 + \&c.$, $\phi_2^{\text{n}} = a + a_1 u_1 + a_2 u_2 + \&c.$,

$$\phi_{\rm m}^{\rm n} = a + a_1 w_1 + a_2 w_2 + &c.$$

where v_1 , u_1 , &c., are what t_1 becomes in passing from ϕ to ϕ_1 , ϕ_2 , &c.; and so of the other terms. Therefore,

$$\Sigma(\phi^{n}) = \phi_{1}^{n} + \phi_{2}^{n} + \dots + \phi_{m}^{n} = \dots + a_{1}(v_{1} + u_{1} + \dots + w_{1}) + \&c.,$$

= \dots \dots \dots \dots (t_{1}) + &c. \dots \dots \dots (4)

where, just as $\Sigma(\phi^n)$ represents the sum of the terms, ϕ_1^n , ϕ_2^n ,

....., ϕ_m^n , so $\Sigma(t_1)$ represents the sum of the terms, v_1, u_1, \ldots, w_1 . Now, in the series, $v_1, u_1, \&c.$, if any term v_1 be fixed upon, there are λ terms, including v_1 , of the forms,

$$v_1, z v_1, z^2 v_1, \ldots, z^{\lambda-1} v_1.$$

The sum of these is zero. Strike these λ terms out of $\Sigma(t_1)$; and then, in the same manner, whatever term among those remaining in $\Sigma(t_1)$ be considered, it may be demonstrated to be one of a group whose sum is zero. And so on. Therefore $\Sigma(t_1)$ is zero. In like manner all the terms on the right hand side of equation (4), except the first, or ma, must vanish. Consequently, $\Sigma(\phi^n)$ is rational. If now we put

$$S_{1} = \phi_{1} + \phi_{2} + \dots + \phi_{m},$$

$$S_{2} = \phi_{1} + \phi_{2} + \dots + \phi_{m},$$

$$S_{3} = \phi_{1} + \phi_{2} + \dots + \phi_{m},$$