one of the most important questions of the age, because a modern refrigerator, constructed on scientific principles, is the one outstanding medium by which we can most effectively put into practice the above axioms. When scientific refrigeration is better understood and more universally adopted, the present high cost of perishable food will be greatly reduced. It is the want of proper facilities for refrigeration that is the cause of the continual heavy loss in foodstuffs, through deterioration, and which keeps up the extraordinary high prices of perishable food. This loss begins at the point of production and ends with the consumer. hence it is he to whom the refrigerator is the greatest benefit. Prevention of disease is the doorway to health. Medical science has proved that the enormous mortality in hot weather, especially among infants, is attributable largely to milk and food having become charged with bacteria, through careless handling and unsanitary refrigerators. A modern refrigerator is an agent of economy. It is the least understood of all household articles. in the home or in the hotel, so much so, that the general idea of a refrigerator is almost directly opposite to the true principle on which it is constructed. A refrigerator is usually associated with the thought of dampness and foul air, a place requiring constant scrubbing, at best, a place in which only to keep things cool and not to preserve them by means of pure dry air. This delusion is due to the fact that many so-called refrigerators are nothing more than elaborate ice chests. The system of circulation in these inferior refrigerators is as adverse to the natural laws of air circulation as the material of which they are made is to the laws of sanitation. The air in a scientifically constructed refrigerator is dryer and purer than the air outside. It is perfectly dry; so dry that wet cloths and wet matches will become dry inside.

The successful refrigerator is lined with a non-conducting material, so that when the provision door is opened and the outside air rushes in, it will not condense on the walls of the interior and cause dampness. If it is safe to line a refrigerator with zine or galvnized iron, then it is safe to feed a baby milk from a

zinc or galvanized iron vessel, an act that would be little less than criminal. it is common practice to store sensitive foods in a galvanized iron lined refriger-Glass and tile lined refrigerators are attractive and are apprently clean and sanitary. But it must be remembered that all such hard materials are good conductors, and when cold, as they are in the refrigerator, and come in contact with the warm outside air when the door is opened, condensation follows and dampness in the refrigerator is the result. If not perfeetly dry, a refrigerator is not only useless, but dangerous. Dryness is the only safeguard against germ life. A scientific refrigerator has no outside ventilation holes, but is tight as a corked bottle, when the door is closed. Instead of ventilation, it has a system of condensing the gases and impurities generated and of carrying them off automatically with the running water from the ice. Some refrigerators are built with the ice directly over the provision chamber, allowing for the cold air to fall naturally. Others are constructed with the ice chamber at the side, called side icers. In the latter case the cold air from the ice enters the provision compartment at the bottom, and it is claimed that the cold air ascends rapidly. Many manufacturers build both types and claim both are right. It is evident that one is wrong. The correct way is nature's way. The ice should be on top, because cold air descends. A furnace is put in the basement and not in the attic of a house because warm air ascends. The whole question of refrigeration resolves itself into two systems. It is obtained either by artificial ice or natural ice. The great difference in the cost of installing these two systems is not the only question to be decided when choosing between the two, nor is the fact that one system will produce a temperature below freezing, while the other will not go much below 36F. Right here, on the question of temperature, is where the greatest mistake is made by many who contemplate installing a refrigeration plant, because the idea prevails that a cold storage is almost useless unless it will freeze, while for nearly all practical purposes, it would be useless if it did freeze, because the percentage of meat and produce which re-