R_{1} may be any one of the roots. This implies that if the roots, in the order in which they circulate, are

$$
R_{1}, R_{\lambda}, R_{a}, \ldots, R_{\delta}, R_{e}, R_{\theta}
$$

the change of $R_{1}^{\frac{1}{4}}$ in the system of equations (141) into $R_{\lambda}^{\frac{1}{14}}$ will cause $R_{\lambda}^{\frac{1}{n}}$ to become $R_{a}^{\frac{1}{a}}$, and $R_{a}^{\frac{1}{n}}$ to become $R_{\beta}^{\frac{1}{n}}$, and so on. In fact, by exactly the same reasoning as that used in establishing the Criterion of pure uni-serial Abelianism, it can be made to appear that the n values of the expression (138) or of (140) obtained by taking the n values of $R_{1}^{\frac{1}{n}}$ for a given value of R_{1}, and taking at the same time the appropriate values of $R_{2}^{\frac{1}{n}}, R_{3}^{\frac{1}{n}}$, etc., as determined by the equations (141), would not be the roots of anl equation of the $n^{\text {th }}$ degree with rational coefficients unless $R_{\lambda}^{\frac{1}{n}}$ could replace $R_{1}^{\frac{1}{n}}$ in the manner above indicated. In like manner, by changing $R_{1}^{\frac{1}{n}}$ in the system of equations (141) into $R_{a}^{\frac{1}{a}}, R_{\lambda}^{\frac{1}{4}}$ becomes $R_{\beta}^{\frac{1}{n}}$, and so on. The principle can be extended to all the terms in the series

$$
\begin{equation*}
R_{1}^{\frac{1}{1}}, R_{\lambda}^{\frac{1}{n}}, R_{a}^{\frac{1}{n}}, \ldots, R_{a}^{\frac{1}{4}}, R_{\theta}^{\frac{1}{n}} \tag{146}
\end{equation*}
$$

$\S 63$. Let, then, the system of equations (141) be written

$$
\begin{equation*}
R_{e \lambda}^{\frac{1}{n}}=a_{e}^{\prime} R_{e}^{\frac{\lambda}{i}}, R_{e a}^{\frac{1}{a}}=b_{e}^{\prime} R_{e}^{a}, \text { etc. } \tag{147}
\end{equation*}
$$

e being a general symbol under which all the terms in the series (143) are contained, while $a_{e}^{\prime}, b_{e}^{\prime}$, etc., are rational functions of R_{e}. These equations give us

$$
\left(R_{e}^{\theta} R_{e \lambda}^{e} R_{e a}^{b} \ldots R_{e \delta}^{\alpha} R_{e c}^{\lambda} R_{e \theta}\right)^{\frac{1}{n}}=G_{e} R_{e}^{\frac{1}{n}},
$$

where G_{0} is a rational function of R_{0}, and

$$
t=\theta+\varepsilon \lambda+\delta \alpha+\ldots+\theta=(n-1) \theta=(n-1) \lambda^{n-2} .
$$

Because λ is a prime root of $n,(n-1) \lambda^{n-2}$ is prime to n. Therefore t is prime to n. Therefore whole numbers h and k exist such that

$$
h t=k n+1
$$

Therefore
For every integral value of z, let $\left(R_{e z}^{h}\right)^{\frac{1}{4}}$ be written $r_{e z}^{\frac{1}{n}}$. Then, putting $A_{e^{-1}}$ for $G_{d}^{h} R_{e}^{k}$,

$$
\begin{equation*}
R_{e}^{\frac{1}{a}}=A_{e}\left(r_{e}^{\theta} r_{e \lambda}^{e} r_{e a}^{b} \ldots r_{s}^{s} r_{e}^{\lambda} r_{\theta}\right)^{\frac{1}{n}} \tag{148}
\end{equation*}
$$

