The patrimony which a few Now hold in laugger-mugger in their hand And all their rest do rob of goods or land.

In Dishop Hall's Satires is this

Thwick-thwack and riff-raff! roars he out aloud.

Riff-rass is said by Florio to come from the Italian ruffola-raffola; "by hooke or crooke, by pinching and scraping, helter-skelter, higgledie-piggledie." Helter-skelter is supposed by some to have its origin in the Latin hilariter celeriter.

(To be continued.)

UNIVERSITY WORK.

MATHEMATICS.

Archibald MacMurchy, M.A., Toronto, Editor.

SOLUTION.

By Iva E. Martin, St. Catharines. (See Monthly for March, 1883.)

Let
$$N=a^a b^B c^Y$$
.

All numbers less than N are prime to it, except the series a, 2a, 3a ... N. (1) b, 2^{b} , 3^{b} ... N; (2) c, 2c, 3c ... N; (3) and in these the numbers ab, 2ab ... N; b, 2bc ... N; ca, 2ca ... N, are repeated; and since in each of the above series of numbers the series abc, 2abc, etc., N occur, we have this series also not prime to N.

the sum of the squares of the numbers less than N and prime to it

$$\frac{2}{A^{2}} - a^{4} \frac{1}{2} \left(\frac{N}{a}\right)^{4} - b^{5} \frac{1}{2} \left(\frac{N}{b}\right)^{4} - c^{4} \frac{1}{2} \left(\frac{N}{c}\right)^{4} \\
+ ab \frac{1}{2} \left(\frac{N}{ab}\right)^{4} + bc \frac{1}{2} \left(\frac{N}{bc}\right)^{4} + ca \frac{1}{2} \left(\frac{N}{ca}\right)^{4} \\
- abc \frac{1}{2} \left(\frac{N}{abc}\right)^{4} \\
= \frac{(N^{3} + \frac{N^{4}}{2} + \frac{N}{6})}{3} - \left{\frac{N^{3} + \frac{N^{4}}{2} + \frac{aN}{6}}{3} + \frac{N^{4}}{2} + \frac{cN}{6}\right} \\
- \left{\frac{N^{3}}{3c} + \frac{N^{4}}{2} + \frac{cN}{6}\right} \\
+ \left{\frac{N^{3}}{3ab} + \frac{N^{4}}{2} + \frac{abN}{6}\right}$$

$$+\left\{\frac{N^{a}}{3bc} + \frac{N^{a}}{2} + \frac{bcN}{6}\right\} \\ + \left\{\frac{N^{a}}{3ca} + \frac{N^{a}}{2} + \frac{Ncb}{6}\right\} \\ - \left\{\frac{N^{a}}{3abc} + \frac{N^{a}}{2} + \frac{abcN}{6}\right\} \\ = \frac{N^{a}}{3}\left\{1 - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} + \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} - \frac{1}{abc}\right\} \\ + \frac{N}{6}\left\{1 - a - b - c + ab + bc + ca - abc\right\} \\ = \frac{N^{a}}{3}\left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{b}\right)\left(1 - \frac{1}{c}\right)...$$

$$+ \frac{N}{6}\left(1 - a\right)\left(1 - b\right)\left(1 - c\right)....$$

The sum of the cubes and the sum of the fourth powers may be found by substituting in the expressions $\frac{1}{2}N^{2}-a^{2} = \frac{1}{2}\left(\frac{N}{a}\right)^{2}$ - etc.,

and
$$\mathbb{Z} N^a = a^a \mathbb{Z} \left(\frac{N}{a} \right)^a = \text{etc.},$$

the value of $\frac{\pi}{a}N^a$, $\frac{\pi}{a}\left(\frac{N}{a}\right)^a$ etc.

UNIVERSITY OF TORONTO.

ANNUAL EXAMINATIONS: 1883.

First Year.

ALGEBRA AND TRIGONOMETRY.

HONDES

Esaminer: W. FITZGERALD, M.A.

t. Solve,

(1)
$$\begin{cases} x^2 + xy = 65 \\ y^2 - xy = 24 \end{cases}$$