both continents; but a circumpolar belt of land seems to have been maintained, protecting the Atlantic and Pacific basins from floating ice, and permitting a temperate flora of great richness to prevail far to the north, and especially along the southern margins and extensions of the circumpolar land. These seem to have been the physical conditions which terminated the existence of the old Mesozoic Flora and introduced that of the Middle Cretaceous.

As time advanced, the quantity of land gradually increased, and the extension of new plains along the older ridges of land was coincident with the deposition of the great Laramie series, and with the origination of its peculiar flora, which indicates a mild climate and considerable variety of station in mountain, plain and swamp, as well as in great sheets of shallow and weedy fresh water.

In the Eocene and Miocene periods the continent gradually assumed its present form, and the vegetation became still more modern in aspect. In that period of the Eocene, however, in which the great numnualitic limestones were deposited, a submergence of land occurred on the Eastern continent which must have assimilated its physical conditions to those of the Middle Cretaceous. This great change, affecting materially the flora of Europe, was not equally great in America, which also by the north and south extension of its mountain chains permitted movements of migration not possible in the Old World. From the Eocene downward, the remains of land animals and plants are found only in lake basins occupying the existing depressions of the land, though more extensive than those now remaining. It must also be borne in mind, that the great foldings and fractures of the crust of the earth which occurred at the close of the Eocene, and to which the final elevation of such ranges as the Alps and the Rocky Mountains belongs, permanently modified and moulded the forms of the continents.

These statements raise, however, questions as to the precise equivalence in time of similar floras found in different latitudes. However equable the climate, there must have been some appreciable difference in proceeding from north to south. If, therefore, as seems in every way probable, the new species of plants originated on the Arctic land and spread themselves southward, this latter process would occur most naturally in times of gradual refrigeration or of the access of a more extreme climate, that is in times of the elevation of land in the temperate latitudes, or conversely, of local depression of land in the Arctic, leading to invasions of northern ice. Hence the times of the prevalence of particular types of plants in the far north would precede those of their extension to the south, and a flora found fossil in Greenland might be supposed to be somewhat older than a similar flora when found farther south. It would seem, however, that the time required for the extension of a new flora to its extreme geographical limit, is so small in comparison with the duration of an entire geological period, that practically, this difference is of little moment, or at least does not amount to antedating the Arctic flora of a particular type by a whole period, but only by a fraction of such period.

It does not appear that, during the whole of the Crefaceous and Eocene periods, there is any evidence of such refrigeration as seriously to interfere with the flora, but perhaps the times of most considerable warmth are those of the Dunvegan group in the Middle Crefaceous and those of the later Larannic and oldest Eocene.

It would appear, that no cause for the mild temperature of the Cretaceous needs to be invoked, other than those mutations of land and water which the geological deposits them-