best guarantee that the building is safe, substantial and in a sanitary condition." The contention here made is not capable of proof, and is advanced in the hope that it may serve to obscure the real object in view. While it is doubtless true that a majority of the most skilled workmen may be found in the union ranks, it is by no means the fact that none but good workmen are admitted. There are thousands of incompetent workmen belonging to the unions, and conversely there are many first-class mechanics who are non-unionists. Hence it follows that the employment of only union labor is not in itself a guarantee of good workmanship. One of the most serious and well-founded complaints preferred against unionism is that it has done nothing to raise the standard of workmanship, but on the contrary seeks to place all mechanics on one level, disregarding the widely differing abilities with which the Creator has endowed them.

Uniform
Cement
Specifications.

Official or quasi-official specifications governing the character of cement tor construction work have been adopted in Germany,

France, Sweden, Switzerland and Russia. An attempt to standardize specifications is now being made in England, where, at present, as in Canada, specifications vary widely even where the nature of the work and the conditions are identical. According to a recent writer on this subject some English cement specifications call for 300 lbs, per square inch on the neat briquette after 28 days; others demand 550 lbs. after 7 days. Not only are different specifications inconsistent with one another (assuming that the architects and engineers who drew them were anxious to obtain good cement) but they often themselves contain paragraphs mutually inconsistent. instance, as finely ground cement with an extreme weight per bushel. Some time ago, says the writer, an engineer drew up an elaborate document giving, amongst other things, the size of the sieve wires. Upon investigation it was found that had the sizes he specified been adopted the cement would have had to find its way through a solid brass plate. As we have previously pointed out the extensive use which is already being made of cement in construction and the certainty of its employment on a still more extended scale in the future demands not only properly drawn specifications, but also a system of testing all cement, in order that the safety and durability of structures built largely or entirely of this material may be assured.

Manufacturing methods have Only the Best is greatly improved in recent years. Wanted The production by enterprising firms of goods possessing not only high quality but artistic design and pleasing appearance, has created a demand on the part of purchasers which cannot be met by the manufacturer who seeks to stand by old methods and styles. The manufacturer who is not prepared to bring his goods up to the highest standard in every particular had better retire from the field, and not wait to be forced out by his more enterprising Some manufacturers enter upon the manufacture of a certain line of goods as a side line to what they regard as their principal business. This side line fails to receive the careful attention and push that

is given to the other departments of the business and in consequence drags along in a lifeless sort of way, the goods produced being regarded with disfavor, and the goods in the market. In perhaps no other direction has there been greater progress than in the production of materials adapted for use in the construction and furnishing of modern buildings in the construction and furnishing of modern buildings in our houses. The new requirements make constant our houses. The new requirements make constant materials. Whether his business be to make bricks, materials. Whether his business be to make bricks, and and one radiators, plumbing goods, or the thousand and one other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings, he can only other materials used in modern buildings.

In a recent paper before the architectural Association of London, Mr. A. E. Munby urges the The Relation of necessity of giving the study of science a larger place in the education in the education of architectural students. He reminds us that the mod us that the modern building and its equipment involves many scientific. many scientific features and problems with which architects in the part tects in the past had not deal but with which the modern architect There are also constantly being brought forward scientific inventions for use in build: use in buildings upon the merits of which the architect should be corn should be competent to decide. Mr. Munby points out that if the out that if the architect has not the scientific knowledge to enable him to do this, or having the knowledge, shown ledge, shows indifference to such attempts in the direction of prodirection of progress, it ought not to cause wonder or complaint, that the complaint that the tide, stemmed by his apathy, finds new outlets new outlets, and that the public place in other hands alone. matters which should pass through his hands alone.
The author The author quotes the saying of Ruskin that work of art with work of art either states a true thing or adorns a serviceable con " serviceable one," as proof that there is no conflict between art and science. After showing some of the most important most important applications to architecture, he folcludes by suggesting that a passage through the following courses at lowing courses should form part of the requirements of an architecture. of an architectural student at the outset of his career:

(1) A general (1) A general experimental course on physics, including laboratory was ing laboratory work and dealing with the dynamics of solids and fluids. solids and fluids, with heat, magnetism and electricity, and very brief. (2) A and very briefly with acoustics and optics; (2) A similar course in the similar course i similar course dealing with the elements of inorganic chemistry, touch chemistry, touching upon principles, but chiefly of a descriptive charge that descriptive character. Mere analysis to be subordinated to simple nated to simple quantitative work and the preparation of important of important compounds. The illustrations of themse cal laws being cal laws being based, as far as possible, upon those substances which substances which would afterwards figure in a course of applied chariof applied chemistry; (3) A short course outlining the principles of goals principles of geology, and dealing with the stratigraphical arrangement ical arrangement of rocks and with petrology rather than with palaontology, and aided by the examination of museum specimens and light is to quarter. of museum specimens, and by occasional visits to quarries. The paper contains a table showing the hours per week devoted to science in the state of week devoted to science in the Architectural Courses in a number of Universities in Europe University of At the head of the list stands McGill University of the control of the list stands McGill Der cent. Montreal, with a total average of 79 or 30½ per cent. of the student's acadamic career devoted to science and its applications