MOTIVE YOWER FOR SMALL MLACHINES.-(Seo page 33.)

The want of a cheap motive power capable of driving sewing and other machines has long been folt, and much ingenuty has been expended in attempting to supply it. The contrivances which have been designed to attain this end may be divided into two classes, the first being composed of motive powers properly so called, and the sccond consiating of accumulators of power, or contrivances by which a considerable amount of manual force exerted for a short interval is stored up and given out as required in the form of a lisser force exerted for a longer neriod. Amongst the motive powers of the first class we have had small turbines diven by water supplied Irom the ordinary mains, " domestic" steam engines, smal' gas engines, and electro-magnetic engines, some few of these contrivances being welt designed, but none of them, so far as we are awaro having ome into gencral use.

Aachines of the sccond class have consisted, with but fow exceptions, of arrangements of springs brought into a state of compression or tension by gear worked by hand, their recoil being utilized to actunte the machine to be driven. The arrangement which we now illustrate on page 33 and which has been designed by Mr. Joseph Holmes, Loudun, Englend, belongs to the second class, but it difiers from its fredecessors in an important respect, namely. that instead of the power being stored up by the tension or cumpression of steel spangs or loy raising dead weights, the necessary force is obtained by the pressure of the atmosphere upon the surface of a pistom moving in a cylinder, and beluw which a vacuum has been formed. The advantages of this arrangement are that a pracically constant force is oltained acting through any required distance, while, at the same time, the whole machine can be kept comparatively light. Thus, for instance, if we suppose a vacuum of 14 lhs . per square inch (and the arrangement admits of an almost perfect vacuum beiug obtaned) 10 exist below a piston 9 in. in diameter, the pressure on that piston will amount to 890 lbs., or be nearly equal to a dead werght of 8 cwt , while the weight of the parts required to obtan this result is very moderate. On the other hand, too, the furce crerted on the piston, veing practically cumbtaut throughont its stroke, there is no necessity to resort to fusees or other contrivances to equalive the furce exerted, as is the case when steel springs with their variable resistance are employed.

The arrangement adopted by Mr. Hulmes will be readily understood by reference to the engravings, tig. 1 being a front, and fig. 2, an end elevation of the motor.
\Rightarrow In these figures, A, is a cylinder of suitable diameter and length fitted with a piston, B, which moves frecly-but perfectly arr-ight-in it. To this piston is attached a band or chain C, which extends through one end of the cylinder over a pulley D, to the dirum E; the latter being geared to a shaft F, which can be turned by the wrench or key P, so as to wind up or raise the piston from the bottom to the top of the cylinder. Instead of the chain or bsnd C, a rack may lo employed. The shaft F, is connected by a clutch O, or a ratchet and pawl or other suitable contrivance, with toothed or frictional gearing, or with belts and pulleys whereby the motion imparted to the shaft on which the drum E, is fixed, is communicated to other shafts. The gearing or pulleys aro so proportioned that any speed communicated to the first wheel or shaft is greatly accelcrated in its iransmission from it to the last shaft H, of the series, which is connected directly or indirectly with the sewing or other machine to be driven. Hl, is a fy or land wheel, which may have grooves at different diameters to correspond with the pulley attached to the machine to bo dris on, and by which the speed or power may bo regulated to suit the work to be performed.

Tho piston B, as before siatod is fitted to work air-tight in the cylinder A, and the lattor is closed air-tight at thr bottom or at one end, the top or other end being open. Whon the piston is raised or drawn towards the top or open ond of tho cylinder a vacuum will be produced in the cylinder bolow the piston, and tho latter will bo pressed down with the full pressure of the atmosphere, and this force is communicated as
explained through the aforesaid gearing to the machine to be explained through the aforesaid gearing to the machine to be driven. It will be seon from the engraving that the motor is provided with a simple brake applied to the wheel H_{1}, this brake being so arranged that it is always in action except When removed by the pressure of the foot on the treadle shown.
By simply pressing or releasing this treadle the motor is started
or stopped at pleasure, and thus porfect conmand is obtained over the motion of the machino which is being driven.

Of course, in such an arrangement as that we have described a vital point is to obtain a piston which shall move frecly in the cylinder, and which shall yet maintain itsulf air-tight without skilled attention. Practical oxperience has proved that such a piston can bo constructed.

With a motor of the kind we havo descr: $d_{\text {, laving a } 9}$ inch cylinder and 2 ft . stroke of piston, a force of about 1800 foot-pounds can be stored up, the piston being raised by 82 turns of the crank handle, and the work of winding up being easily accomplished in one minute. This umount of stored-up work is suflicient to make about 5000 stitches with a sewing machine, or to sew about seven or eight yards, according to the quality of the work. The arrangement in modified forms is also available for a variety of purposes where the exertion of a small power for long periods is rejuired, and we anticipate that numerous applications will be fuuad for it.-Engeneering.

PEAT-CUNDENSING MACHINERY.-(See page 30.)

The total absence of coal in the strats of this and the adjoining province is a source of weakness which has fur a lorg time been patent to the most careless consi lerer of our jrogress in manafactures. Our water jower is abundant, but we hase no coal and our vast forests already begin to fail to supply fael necessary even for ioousehold consumption. We havo however vast deposits of a most useful fuel hitherto almost untuuclied, in the peat-beds of Anticosti and other places. Deposits of this fuel exist to a great extent in Great Britain and Irelanil aud the present high price of coal there has turned the attention of the public to this hitherto neglected source of heat. Experimental trialgof peat-condensing machiacry have recently bean made there in the presense of induential capitalints and engincers, all of whom expressed their opinton that the success of the project was undoniable. It is quite unnecessary to remind our readess that the question of fuel here, in Quebec and Ontario, is in a very unsatisfactory state. Our forests are beginning to fail, and our deposits of metallic ores aro for the most part necessarily neglected. This being the case we may learn a profitable lesson from the misfortuno of the present scas ity of coal in England.

We give on page 36 a plan and side elevation of a jeat-condensing machine by Messrs. Clayton, Son, and Howlett, recently introduced to public notice. The illustration is from the t.ngineer which romarks upon it as follows: "It is unnecessary for us here to enlarge on the importonce which, us our readers know, we have always attached to the utilisation in some form or other of the immense deposits of fuel contained in the peat fields of Great Britaia and Ireland, and we will therefore at once proceed to a description of the details of this machinery, which, to our minds, is cortainly the nearest approach to a solution of the great question of how peat can be freos from the hygroscopic and fixed water it contains in its natural state, and also reduced in bulk as to bo convenisnt for transport storage, yet brought forward.
In the system which Messers. Clayton, Son and Howlett propose to pursue, however, the peat, when cut, is first of all filled into what they called "squeezing trucks," in which, durir.g its journey to tho works, by the action of a scrow or lever, a large proportion of free water is forced out through verforations in the bottom and sides of the said trucks It will be seen from our illustration that, separate from the moveable irivingjongine, the condensing machine itself consists primarily of huisting gear, which is connected or disengaged from the motive puwer by a hand lever, and is used to raise the peat as it arrives from the bogs to the lovel of the vertical hopper, but which is clearly an arrangement quite extraneous to the vital principle of the manufacture. The mastication or trituration of the peat, after it has been filled into the hopper, is effected by a vertical shaft revolving in the upright chamber, and carrying a series of cutting blades set round the shaft like the thread of a scrow, and by the action of which the peat is forced down into the long horizontally-placed cylicder. This also is fitted vith a revorving shaft pessing through its contre, on which is a forcmg screw and also a set of discs arrauged to form a dissecting double screw, and at the end of this cylindur furthes. from the hopper are fitted cutting blados of hard steel. The $\boldsymbol{s}^{\text {t }}$ on of the machine is then this: the peat, furced into the horizonial cylinder by tho joint action of the blades and screws, is carriea

