ARTS DEPARTMENT.

[Noth.—We continue this month the selection from the Annual Examination Papers of the University of Toronto, for Junior Matriculation; also the selection from the July Examination Papers of the Education Department for First, Second, and Third-Class Teachers, adding solutions to several of the Mathematical papers. Archibald MacMurchy, M.A., Math. Ed. C. E. M.]

UNIVERSITY OF TORONTO EXAM-INATIONS, 1879.

JUNIOR MATRICULATION.

ALGEBRA. - HONORS.

1. Define a fraction, and prove that

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$
.

Simplify

$$\frac{\frac{1}{1-a} - \frac{1}{1-b}}{\frac{1}{(1-a)b} - \frac{1}{(1-b)a}} \times \frac{\frac{1}{1-b} - \frac{1}{1-c}}{\frac{1}{(1-b)c} - \frac{1}{(1-c)b}} \times \frac{\frac{1}{1-c} - \frac{1}{1-a}}{\frac{1}{(1-c)a} - \frac{1}{(1-a)c}}.$$

Describe methods of finding the G.C.M. of two algebraical quantities.

Shew that (a-b) (b-c) (c-a) is the G.C.M. of $(a+b)(a-b)^3 + (b+c)(b-c)^3$ $+(c+a)(c-a)^{3}$ and $(a-b)(a+b)^{2}+(b-c)$ $(b+c)^2+(c-a)(c+a)^2$.

Find also the least common multiple of these two quantities.

3. Find the square root and the fourth root of

$$x+x^{-1}-4\sqrt{-1}(x^{1}-x^{-1})-6$$
.

If $x^4 + 2ax^2 + bx^2 + 2cx + d$ is a complete square, prove that

$$a = \frac{c}{\sqrt{d}} = \frac{b - 2\sqrt{d}}{a}.$$

4. Find the roots of the equation

$$ax^2 + bx + c = 0$$
.

What do the roots become when (1) a=0;

(2) c=0; (3) a=0 and b=0?

Prove that a quadratic equation can have only two roots.

5. Solve the equations

(1)
$$\sqrt{2x} + \sqrt{3x} = \sqrt{5}$$
.

(2)
$$\{(x+l)^2 - a^2\}$$
 $\{(x+l)^2 - b^2\}$
= $\{(x+m)^2 - a^2\} \times \{(x+m)^2 - b^2\}$

(3)
$$\frac{1}{x-3} + \frac{3}{x+15} + \frac{1}{x+3} - \frac{5}{x+9} = 0$$
.

$$\frac{1}{x} + \frac{1}{z} = \frac{2}{y}$$

$$x + z = \frac{1}{4y}$$

$$x^2 - 2yz = \frac{1}{12}$$

6. Find the sum of n terms of an arithmetical series, having given the first term and the common difference.

Find the sum of 32 terms of the A. P. whose 5th term is 20, and whose 21st term is 15.

7. Define a harmonic series, and shew how to insert m harmonic means between a and b.

If a, 2b and c be in H. P., then will a+c, a, and a-b, be in G. P., and also will c+a, c, and c-b.

8. Find the number of combinations of nthings taken r at a time, and prove that it is the same as the number of combinations of nthings taken n-r at a time.

Prove that the number of combinations of 2n things taken n at a time is

$$2^n \cdot \frac{1 \cdot 3 \cdot 5 \cdot \ldots (2n-1)}{1 \cdot 2 \cdot 3 \cdot \ldots n}$$

9. Assuming the truth of the Binomial Theorem when the index is a whole number, prove it when the index is a positive fraction.

Write down the fifth term of $(2^3 - 2)^{-n}$.

Prove that

$$\sqrt[3]{\frac{1}{6}} = \frac{1}{2} + \frac{1}{3 \cdot 2^{8}} + \frac{1 \cdot 4}{1 \cdot 2} \cdot \frac{1}{3^{2} \cdot 2^{8}} + \frac{1 \cdot 4 \cdot 7}{1 \cdot 2 \cdot 3} \cdot \frac{1}{3^{3} \cdot 2^{7}} + \dots$$