it hat not recovered for the space of twelve centurice.
'I'le ravages of the Visgoths, in the fith century, destroyed itl the most beautifil monuments of antiquity; and Arehitecture thenceforward became so coarse amd artless, that their professed architects understood nothing: at all of just designmg, wherein its whote beauty consists, and hence a new manser of building took its risi which is callud the Gothic.
Charlemagne dad his uthust to restore Archatecture, ame the Freach apphed theaselves to at with success under the cacouragement of II . Capet, has sun Rubert sticeced ed hom in has design, tull by degrees tha mudern Arehtecture was rua min as great an aceess of delicacy as the Guthec had beiore done into passinences To these may be added, the Aresbek, and Morisk or Moorish Architecture, which were much of a piece with the Gothes, only brought in from the south by the Moors and Saracens, as the former from the turth by the Guthis and Vandals.
The architeces of the 13 th, 14 th, and 15 th centures, who lrad some knowledge of sculpture, seemed to make periection cunsist atogether in delatacy and multitude of oradnacnts, whelh they hestow upon their buildings with a world of catre and solicitude, thoughirequently wathout judgenaent or tuste.
In the last tino cemturns, the archatects of italy and lirance were wholly beat upon retrevang the pramtire simphetity and beauts of Architecture; in which they did not full ofsitecess ; insomuch, that our churchea, palaces, \&c. are buitiafter the antique. Civil Archntecture may be desunguished with regard to the several periveds or states of it, inito the antique, ancient, gothie amd modern, etc. Another division of Civil Architecture arises from the diflerent proportions which the different kunds of buildings rendered ar.cessary, that we suight hate some sujtable forthe purposeaccording todicbulh, strentgh, delicacy, ricliness; or simplicity required.
Hence arose the five orders, all invented by the ancients at ditlerent tames, and on different occasions, viz: Tuscan: Doric, Jonic, Corinthian, and Composite. The Gothse Architecture may also be mentioned here; for it is perfectly distunet both from the Grectin and Ronian style, allhough derived from the latter.
latis of riojection.
In explaming the theory of projections, no allowance, will be made fur aumuspheric sesistance In most cases the projection of i quids is subject to, and qoverned by the same laws as that of sulids. If a body-a. ball for instance - is prujected verucally upivards, 11 will require ine same time to retum that jo ocrupicd in ascending; and the thene reguired in ascending and descending niay be readily ascertained; also the exient of is projection, by having the given quantity of puwer applida. By a similar rule, the 4 eiglit of projection, and the power applied, may be ascertained by the time occupied-the weight of the ball beinf known ; or the power and time may be ascertaned by the height to which the bafl is projected. A body in talling will descend one foot in one fourth of a sccund of time, and will quadruple the distance as often as the thing is doubled; thus, four feet in lialf a second, sixteen fect in one second; \&c. Now, af a ball asocnds by projection 16 feet, it will sequire one second to aseend, and anus ser to descend, making two seconds. If the irecight of the ball is one pound the power rejuired to produce uhe projection will be cqual so rising one pound 16.fect-16 pounds 1. foot-or 61 pounds threc. inches: therefure, if the force applied is continued but three inchics; the pressure must be 64 lbs. If four times the power as.applicd, the ball will be projected 61 feet high, and the , time occupicd in ascending
locity at the time of starting and at the termination of its descent will be at the rate of 04 feet per second. To ascertain the height to which a prujecied ball las ascended, by whe time of its absence, inulijply une half of the time of the absence in fouriths of seconds by itself: the product will.be the lieight of its ascent in feet. For example, if the ball is absent luar secunds, vie halif of the time in two sceunds, which so fuurlis of a seculd, that 5 times - are 6, , which is the height of its ascent in fect. In ascertain what furce to re yuared to jrugect a baill tu a specaided bagha, mulaply the givea height by the disamia which the furce is cuncinucd, wad dat patulut by the weight of the bath. Fur cabanplo, if a ball wenging 4 lles is to be projucied w the hergho of wetect and we furee is is be applied fut dae space of three naches baus hadaphed by 4 to make one fuot; and 4 being multiplied by 01 makes 256; this product being multiphed by 4 -the weight ci the batl-rives 1024 as the required furce. When a ball is prujectcd obliquely su as tu furm a chatc, the belu city of the ball will be retarded ly gravity during the first half of its journey, and accelerated by the same force, and in the same proportion, during the other half If it se jroyected at an matifation of 15 degrees with the hurinon, and with sullicient furee tu clivate it 16 feetfot its highest altitude, it will have performed its juurney in two seconds, and at every puint of as proaress will be directly under the pumt at which it would have Leen if it had hept va a direct course withut having been affected by the force of gravity. In other words its horizontal. progress will be uniform $;$ and at ever! point of time, during its prouress, it will be just as far hecum the line of direct inclination as it wuld liave fallen in the same time perpendicularly. Jherefore, knowing the velocity with which a ball is projected, the time required fur its arrival al anj. Inimit im its prugress atay. be readily calculated, also its sertical elesdidn at asy point in its horizontal progress.
Chear Ramronds.-All, or most of those who have seen railruads, have alsú seen u.casionally runaing on them, cheap and lightmade cars which are propelled by means of a crank which is turned by one of the passengers. These hanc-;one: cars are furnished for the convenience of laburers on the ruads, and are by thern used fur conser ing themselves from their residence, to such places on the road as require repairs or other business. These cars are usually propelled at a speed of ten or twelve iniles per hour. It has been suggesied diat dere are many phaces where light railyays mighat le consuruc, ch ata cheap ratc-at an expense fot cxceding se per rod - which shuuld be useful for the cone yance of passengers betivecon willages, of frumi ual puat to anulher in the same toan or city, dy this light hind of cars to be chus rropeiled by haud. It is argued that the busiuess of worh. ing them would be no more laborious than rowing a ferry-boat by hand, which is cxitursively pracused in phates whut the business will hut suppurt steam forry buats. Twu men are able to propel a light car ten miles por hour with twenty passengers; and a road lur thrs purpose merely, might in mavy places admil of an elevation an posis in a cheap manner, which would nut be saf: fur a ruad of urdinary service. Thiere may undubitedyy be found many places where a cheap rond for the purpose would prove a profitable cuncern.
The Sutagheio Jriale.-The new Rail road Bridge over the Connecucut river at Springfield, is constructed on a novel plan, es hibtung much rational science asd calculation, which in connection with its extmurdinary lengih and height, renders it cunspicuous, a. mong lic many artificial curiositues which thic progress of science and enterprise has recently broughtunto vew. The leagh withis bridge is 1300 feet. its heghe from the sirface of the river to the top of the hrialge, is near on
feet. It is butit on the strail, cross-brace principle, and rests on sis well finished stone piers. One striking peculiarity. of dis bridge is, that in its entire coustruction, it has neither mortise nor tenon; the braces are simply absuted against certain crosseliucts whelr are ganred intu the caps and sills, and the later are firmly secured by stutut irun bolis which extend jericall! frums the sills to the eaps, passing thruggh buth, and terminate in huge serews and nuts to mateh: thus effietualle securing the uridye ag.inst the pussibility of tooseness iis is juints. This bridye was projected and culsortucted by Mr. Hunc of Yarren, Mass., at M expluse of $\$ 115,000$, including stune "urh. We shall pruballs furnish a full leingl? view of this bridge as suen as we can coivenicull prucure the engraving. - .Mechnoic.
Filater Cahikt. - Musi. people have seen a beauiful article of paper hangings, usually termed 'welvet paper,' die figures on whici resemble fine cascmere of brilliant colors. The relven carpe is made on a similar principle. The last is of cheap and strong coteon sheceing. The figures are formed of old voolen cluths of variuus culors gruund ur "ine, and secured to the base by a sinung cupal cemein. The rich and elegan ligures are ripidy formed by a peculiar process and operation of maclinery. This carpet is calculated to be very durable, and will come into market cheaper than any other find for handsome floors.

Paberbixa Ice. - Much has been said of late on the cfficary of san-dust for preserving ice, from which it might be inferred unat there is some peculiar anti thave principle or projerty in saw dust, which is not found in other materiale. The fact is, that the excellunce of saw dust for this purpose, consiests not in the substance of which it is composed, but in the peculiar form of its grains; which admits of a large propsrtion of intervening air, which is a bad cunductor of heat when culfumal, what the unly usc of the baw dust, is to protant io circuation. It may be kept a long time enclosed in a bes rade of thick pine plank; but the colid wood will not so throughly exclude the caloric of the surromaling athusiphere, as an equal quantity of confined air betweentwo hin partitions of wood. Leta box be made of very fine pine boards, arranged in a succession of four or five, partitions half ian melh apart cxtending round and over the cutire cube, and ice may be kept in it through the eummer scason, widhoul salvilust or any other materia!.

Mowng Machise. - Many allompts bexise been made to construct a machine ibat might be worked by horse power for cutting grass; tut hute hare succeeded. Sumce experiments have been recently made on a_{i} moiving mochine to be managed by hand, which appears likely to supersede the.use of the scythe on clear fields, and if it succeeds will save more than hatif of the labor of mowing. It is calculated to take a swarth-or course, five or sis feet wide and cut smooth and close as fast as a man cam walh over the ground. Of course a maan will mow an acre in less than an buirr. Ayother adsinatage that will attend thas machioce is that it will leavo ihe cut grass all lyingone way, and of a uniform thichness, thus saviug the labor of spreadiag the swartise The cust of the machine will not exceed two dullars.
T'm. Dotmemand Rane- - Thismachine being nearly allicd to that for mowing we give it at notice in this place. It has been intrulucut, huroughly groyed and several of them are in use. It consists of a yery light arrangerncat of frame work about ten leet long, with handes at cach end by which two taki hold of the machine and walk abreast allowing at yart of the rake to slide on: the ground, whed gathers the hay very clean, and rataly deposito the same in atiarotes at the option of the managers. This ratic is much more economical than the forse where the hay to light, and ordinary;men can with vic, of thise sahes gather the, hay frow an acre of land in twenty minutes.

