ned locomo-

SISTANCE Train resistance=5 lbs. per ton loaded 2 contents to 1 of tare. If train is all tare, use 9 lbs. resistance instead of 5.

rail, when nce accordd or wheels eel and rail ed of about the cylinder nd traction

The increase in train resistance and decrease in tractive force of locomotive must be taken into consideration when speed is increased above eight to twelve miles per hour, as then the horse power of the locomotive is the limiting factor.

(P), diam-3), and dia-

To find the Horse Power of a given locomotive, the separate items of grate area, heating surface, etc., would have to be known. A rough estimate of the tractive power at different speeds can however, be made from boiler pressure, cylinders, drivers, etc., from which H.P. can be figured. The mean effective cylinder pressure in per cent, of boiler pressure, per Revolution of drivers per minute being given, is as follows:-

MEAN EFFECTIVE CYLINDER PRESSURE (M.E.P.) IN PER CENT Boiler Pressure (simple engine).

h pressure

Rev. per Minute..... 20 40 60 80 100 120 140 160 180 P.C. Boiler Pressure... 90 85 80 70 62 54 46 40 36

of cylinder

Rev. per Minute..... 200 220 240 260 280 300 320 340 360 P.C. Boiler Pressure... 32 29 26 24 23 22 20 19 18

For Compound Engines add 5% to these figures.

To change revolutions per minute (R.P.M.) to Miles per Hour (M.P.H.) diameter of drivers in inches being known,

 $R.P.M. \times D = M.P.H.$ 336

s obtained ers if other

lrivers, and From this the M.E.P. at any speed can be found approximately, the Tractive Power at that speed will then be

 $T = \frac{M.E.P. \times d^2S}{D}$

motive can

To find Horse Power at any given speed in miles per hour. multiply tractive power at that speed by the speed, and divide by 375,-

ngine and of grade.

$$H.P. = \frac{T \times S}{375}$$