WE shall not soon forget the pleasing, earnest, helpful address, by Rev. J. W. A. Stewart, of Rochester, N. Y. Although crowded with engagements during his short stay after the conference, he, like all loyal Woodstock boys of "ye olden time," did not forget McMaster. Mr. Stewart kindly consented to address the classes in Homiletics. The students in the Arts department were also invited. He impressed his hearers with the thought of the preacher's unique position as a leader in public worship. The service should be most helpful to every one. "Let it be done decently, earnestly, reverently." The preacher should be under complete control. "Loud enough to be heard is loud enough." As to the sermon, Mr. Stewart spoke with no uncertain sound. "It is a downright outrage and insult to appear before a congregation unprepared." The hour passed away all too soon. We promise him a hearty welcome to our Hall whenever in the city again.

McMaster is not behind the times in regard to popular University lectures. In former months we have been entertained by our Theological Professors, on subjects, no doubt, dear to their hearts. On the evening of the 22nd of February, however, the lecture took a decidedly different turn. The subject of the lecture was "The Physical Basis of Music." In a few appropriate sentences, Professor McKay, the lecturer of the evening, was introduced by Dr. Rand. After a few introductory words concerning the subject in hand, the lecturer dealt with the production of sound, showing that it was caused by vibrations transmitted from a sounding body through any elastic medium to the drum of the ear. By means of a revolving siren, he showed how the well known ratios of the Major scale were determined. The earlier mathematicians, thinking that they discovered these same ratios in the relative distances of the celestial bodies, invented the phrase "Harmony of the Spheres." Illustrating by experiments, he showed the three points of difference in sounds-Intensity, Pitch and Quality. The lecturer then dealt with harmonics, showing that on their presence depended a note's richness of quality. These harmonics consisted of several overtones sounding in unison with one fundamental. On the basis of the compound character of these sounds, he made two divisions—simple notes and compound notes. By means of a silver chord vibrated in sections by electricity, he made audible at the same time both the fundamental and the harmonics, thus analyzing the compound note. The lecturer then explained the phenomenon of beats. By means of two tuning forks, vibrating at slightly different rates, he made the beats quite audible. This undulating or waving sound, called beats, he explained by showing that the weakest sound was produced when two waves of rarification reach the drum of the ear at the same time, while the climax was reached when two waves of condensation affect the drum at the same time. Beats, he said, are the cause of dissonance, and by means of them he explained the structure and harmonics of the Major Scale. In the octave, third, and fifth, the ratios are so determined because no beats are produced and thus there is concord. The discord found in the Major Second is not due to the presence of beats.