Charles's Law or the Law of Gay-Lussac.—The volume of a gas increases (or decreases) 2 \frac{1}{2} of its volume at zero for every degree rise (or fall) in temperature.

(It must be carefully observed that it is $\frac{1}{2}$, of its volume at zero. Thus, if a gas at 20° is heated to 21°, it will not expand $\frac{1}{2}$, of what its volume is at 20°, but $\frac{1}{2}$, of what its volume would be at 0°.)

Suppose now that we start with a certain volume of gas at 0° and cool it to -1° , it will contract $\frac{1}{3}$ of its volume;



Fig. 10.

if we cool it to -2° it will have contracted, in all, $\frac{273}{10}$ of its original volume. Finally, if we could cool it to -273° it would (theoretically) lose $\frac{273}{10}$ of its original volume, i.e., its volume would become 0. As its volume cannot become less than 0, we argue that there is no temperature below -273° C. This is absolute cold, and the temperature is called Absolute Zcro. A thermometer-scale, with degrees the same size as centigrade degrees and this point labelled zero, is called the Absolute Scale. 0°C. becomes 273° on the absolute scale and 100°C., 373° absolute.

This may be formulated as follows:

Abs.° =
$$C.^{\circ} + 273^{\circ}$$
 or $C.^{\bullet} = Abs.^{\circ} - 273.^{\circ}$

Further, let us consider a volume of gas which, for convenience 1: calculation we choose as 273 ec., at 0°C., 2..., 273° Abs. If we raise the

temperature 1°, the volume will be 274 ce., and so on; and similarly for lowering of temperature, as indicated in the table:

Vol. 276 ec. 275 " 274 " 272 "	C. 3° 2° 1°	Abs. 276° 275° 274°	Vol. 272 cc. 271 ··· 270 ···	C. -1° -2° -3°	Abs. 272° 271° 270°
273 "	<u>0°</u>	273°		etc.	210