We now present a second solution to this distribution of inspection effort problem, a solution which applies when detection probabilities have different properties.

Theorem 3.2 (Spreading of inspection effort)

Let $1 - \beta_1(\epsilon_1)$ and $1 - \beta_2(\epsilon - \epsilon_1)$ have properties (3.8) and (3.9) and let them be strictly concave, i.e.,

$$\frac{d^2}{d\varepsilon_1^2}(1-\beta_1(\varepsilon_1)) < 0, \quad \frac{d^2}{d\varepsilon_1^2}(1-\beta_2(\varepsilon-\varepsilon_1)) < 0 \text{ for all } \varepsilon_1 \text{ with } 0 \le \varepsilon_1 \le \varepsilon. \quad (3.26)$$

Then the equilibria (F^*, q_1^*, q_2^*) and the equilibrium payoffs E_I^* and E_S^* of the game described above are given by

$$F^*(\varepsilon_1) = \begin{cases} 0 & \text{for } \varepsilon < \varepsilon_1^* \text{ with } 0 < \varepsilon_1^* < \varepsilon \\ 1 & \text{otherwise} \end{cases}$$
 (3.27)

where

(i) If
$$\beta_1^{-1} \left(\frac{b_1}{b_1 + d_1} \right) + \beta_2^{-1} \left(\frac{b_2}{b_2 + d_2} \right) < \varepsilon$$
 (3.28)

where $\beta_i^{-1}(\cdot)$ is the inverse of $\beta_i(\cdot)$ for i = 1, 2, then

$$\beta_1^{-1} \left(\frac{b_1}{b_1 + d_1} \right) \le \varepsilon_1^* \le \varepsilon - \beta_2^{-1} \left(\frac{b_2}{b_2 + d_2} \right), \ q_1^* = q_2^* = 0$$
 (3.29)

$$E_I^* = E_S^* = 0. (3.30)$$

(ii) If
$$\beta_1^{-1} \left(\frac{b_1}{b_1 + d_1} \right) + \beta_2^{-1} \left(\frac{b_2}{b_2 + d_2} \right) \ge \varepsilon$$
 and $d_1 > d_2$. (3.31)

If
$$b_1 + d_2 > (b_1 + d_1) \cdot \beta_1(\varepsilon)$$
, (3.32)

 ϵ_1^* is the unique solution of the equation

$$-b_1 + (b_1 + d_1) \cdot \beta_1(\varepsilon_1^*) = -b_2 + (b_2 + d_2) \cdot \beta_2(\varepsilon - \varepsilon_1^*). \tag{3.33}$$

Furthermore,

$$q_1^* = \frac{G_2}{G_1 + G_2} = 1 - q_2^*, \tag{3.34}$$

the equilibrium payoffs are