ed by giving definite values to the surds in F, and taking the cognate functions without reference to these surds.

PROPOSITION VIII

Let an equation of the m^{th} degree, whose coefficients are rational functions of a variable p, be, X=0; X having no rational factors; and let an algebraical root of this equation, in a simple integral form, arranged also so as to satisfy the conditions of Def. 8, be f(p). Take u_1 , a surd in f(p), not a subordinate of any other surd in the function, with the index $\frac{1}{n}$; and let the cognate functions of f(p), obtained by successively changing u_1 , wherever it occurs in f(p) in any of its powers, into u_1 , u_1 , u_1 , u_1 , u_1 , u_2 , u_1 ,, u_1 , u_2 , u_2 , u_3 , u_4 , u_4 , u_5 , u_5 , u_5 , u_6 , u_6 , u_7 , u_8 , u_8 , u_8 , u_8 , u_8 , u_8 , u_9 ,

$$\phi_1 \text{ or } f(p), \phi_2, \phi_3, \dots, \phi_n$$

Let F_1 (x) denote the continued product of the terms, $x - \phi_1$, $x - \phi_2$,, $x - \phi_n$. The coefficients of the various powers of x in F_1 (x), made to satisfy the conditions of Def. 8, are (Cor. 3, Prop. VI.) clear of the surd u_1 ; and the terms, ϕ_1 , ϕ_2 ,...., ϕ_n , constitute (Prop. VII.) the series of the unequal cognate functions of f(p), obtained by affixing definite values to all the surds in F1 (x), [which are necessarily surds in f(p)], and taking the cognate functions without reference to the surd character of the surds so made definite. \mathbf{F}_1 (x), which is clear of the surd u_1 , not have the coefficients of the powers of x rational, let u_2 , a surd in $F_1(x)$, not a subordinate of any other surd in $F_1(x)$, with the index $\frac{1}{x}$, be successively replaced by u_2 , $z_2 u_2$, $z_2^2 u_2$,...., $z_2^{r-1} u_2$; z_2 being an rth root of unity, distinct from unity; and, in consequence of these alterations, let $F_1(x)$ become successively $F_1(x)$, ${}^2F_1(x)$, ${}^3F_1(x)$,..., ${}^rF_1(x)$; the functions which are ϕ_1 , ϕ_2 ,...., ϕ_n , in $F_1(x)$, becoming ϕ_{n+1} , ϕ_{n+3}, ϕ_n , in ${}^2F_1(x)$, and becoming ϕ_{n+1} , &c., in ${}^3F_1(x)$; and so on. Denote the continued product of the terms, $F_1(x)$, ${}^2F_1(x)$,, F₁ (x), when the result is made to satisfy the conditions of Def. 8, by $F_2(x)$, which is (Cor. 3. Prop. VI.) an expression clear of the surd u_2 , and such (Prop. VII.) that the functions, ϕ_1 , ϕ_2 ,....., ϕ_{nr} , [the