FOR AN INITIALLY CIRCULAR ORBIT

$$
\Delta V_{e}=\sqrt{\frac{2 \mu}{a} \frac{(1+e)}{(2+e)}}-\sqrt{\frac{\mu}{a}}+\sqrt{\frac{2 \mu}{a(1+e)(i+e)}}-\sqrt{\frac{\mu}{a} \frac{(1-c)}{(1+e)}} \text { (83.1) }
$$

Using series expansion, the following approximations are
(B3.4)

Substituting Equations (B3.2) through (B3.5) into (B3.1) simplifying and eliminating second order terms in e gives

$$
\Delta V=\sqrt{\frac{\mu}{a}}\left(\frac{e}{2}\right)
$$

Since the initial state is assumed to be e $=0$, therefore

$$
e=\Delta e
$$

and so, as $\Delta \mathrm{e} \rightarrow \mathrm{o}$

$$
\frac{\partial\left(\Delta V_{e}\right)}{\partial e}=\frac{1}{2} \sqrt{\frac{a}{a}}
$$

$$
\begin{align*}
& \text { By. } 0 \\
& \text { DERIVATION OF } \frac{\partial V e}{\partial e} \\
& \text { introduced. } \\
& \sqrt{1+e} \div 1+\frac{6}{2} \tag{B3.2}\\
& \sqrt{1-e} \div 1-e / 2 \tag{B3.3}\\
& \frac{1}{\sqrt{1+e}} \stackrel{1}{=} 1-\frac{e}{2} \\
& \frac{1}{\sqrt{2+e}} \div \frac{1}{\sqrt{2}}\left(1-\frac{e}{4}\right) \tag{B3.5}
\end{align*}
$$

