

Even if greenhouse forcing increased no further, there would still be a commitment to a continuing sea level rise for many decades and even centuries, due to delays in climate, ocean and ice mass responses. As an illustration, if the increases in greenhouse gas concentrations were to suddenly stop in 2030, sea level would go on rising from 2030 to 2100, by as much again as from 1990-2030, as shown in the diagram below.



Commitment to sea level rise in the year 2030. The curve shows the sea level rise due to Business-as-Usual emissions to 2030, with the additional rise that would occur in the remainder of the century even if climate forcing was stabilised in 2030.

Predicted sea level rises due to the other three emissions scenarios are shown below, with the Business-as-Usual case for comparison; only best-estimate calculations are shown.



Model estimates of sea-level rise from 1990-2100 due to all four emissions scenarios. The West Antarctic Ice Sheet is of special concern. A large portion of it, containing an amount of ice equivalent to about 5m of global sea level, is grounded far below sea level. There have been suggestions that a sudden outflow of ice might result from global warming and raise sea level quickly and substantially. Recent studies have shown that individual ice streams are changing rapidly on a decade-to- century timescale; however this is not necessarily related to climate change. Within the next century, it is not likely that there will be a major outflow of ice from West Antarctica due directly to global warming.

Any rise in sea level is not expected to be uniform over the globe. Thermal expansion, changes in ocean circulation, and surface air pressure will vary from region to region as the world warms, but in an as yet unknown way. Such regional details await further development of more realistic coupled ocean atmosphere models. In addition, vertical land movements can be as large or even larger than changes in global mean sea level; these movements have to be taken into account when predicting local change in sea level relative to land.

The most severe effects of sea-level rise are likely to result from extreme events (for example, storm surges) the incidence of which may be affected by climatic change.

## What will be the effect of climate change on ecosystems?

Ecosystem processes such as photosynthesis and respiration are dependent on climatic factors and carbon dioxide concentration in the short term. In the longer term, climate and carbon dioxide are among the factors which control ecosystem structure, i.e., species composition, either directly by increasing mortality in poorly adapted species, or indirectly by mediating the competition between species. Ecosystems will respond to local changes in temperature (including its rate of change), precipitation, soil moisture and extreme events. Current models are unable to make reliable estimates of changes in these parameters on the required local scales.

Photosynthesis captures atmospheric carbon dioxide, water and solar energy and stores them in organic compounds which are then used for subsequent plant growth, the growth of animals or the growth of microbes in the soil. All of