Hypothetical combination:

Chloride of	potassium	0.003
"	sodium	0.348
	calcium	0.002
***	magnesium	0.000
	lime	0.066
		0.049
Organic matter		trace.
Organic in		0.400

Total disolved solid matter, by direct experiment dried at 180° C. = 0.480.

An imperial gallon of the water, at 15.5° C., would contain:

	grains.
Chloride of potassium	0.210
n sodium	24:372
calcium	0.140
magnesium	0.350
Sulphate of lime	4.623
Silica	
Organic matter	
	33 827

Lithia, baryta, strontia, bromine, iodine, and carbonic acid, were sought for, and found to be absent.

7.—Water from a spring on the property of Mr. Hendricks, near Plumweseep station on the line of the Intercolonial railway, and three miles above Sussex, King's county, province of New Brunswick. Examined for Mr. John White.

The sample sent for examination, not more than six fluid ounces, contained a trifling quantity of brown flocculent matter in suspension. This was removed by filtration. The filtered water was colourless and bright; devoid of odour; and had a strong saline taste. Reaction, neutral—both before and after concentration. It contained 3356.5 grains of dissolved saline matter, dried at 180° C., per imperial gallon.

A qualitative analysis, by Mr. Wait, showed it to contain:

Soda	large quantity.
Lime	small quantity.
Magnesia	very small quantity.
Sulphuric acid	small quantity.
Carbonic acid	trace.
Chlorine	
Gilian	

Boiling did not produce a perceptible precipitate.