4. ATMOSPHERIC CHEMISTRY

4.1 Introduction

Increases in atmospheric acidification result from the oxidation of sulfur, nitrogen, and carbon compounds to form the strong mineral acids H_2SO_4 and HNO_3 and weak organic acids. Therefore, the oxidation of SO_2 , NO, and NO_2 must be among the processes appearing in the long range transport LRT models if they are to predict meaningful wet and dry deposition patterns for individual species such as SO_2 , NO_2 , HNO_3 , and H_2SO_4 . That is because the rates for wet and dry removal of SO_2 and NO_2 are vastly different from H_2SO_4 and HNO_3 , respectively. The chemical forms significantly influence the residence time and transport distances of these sulfur and nitrogen compounds. Also, the extent of the adverse ecological effects may be strongly dependent upon the chemical forms.

4.2 Linearity vs. Non-Linearity

The LRT models described in Chapter 7 attempt to account for the formation of H_2SO_4 through a simple, linear rate law, which is:

$$d[H_2S0_4]/dt = d[S0_4^2]/dt$$
(4-1)
= k_S[S0₂]

In words, equation 4-1 states that the overall formation rate in the atmosphere of H_2SO_4 is equal to the rate for SO_4^{2-} formation, which is in turn equal to a constant (k_S) times the SO_2 concentration. The constant k_S includes the combined rate of SO_2