representing two parallel (or, it may be, coincident) straight lines; the former reduces it to

$$By^2 + 2 Dx = F,$$

and by taking the origin on the curve, still further to

$$y^2 = Lx$$
,

representing the parabola.

3. On a method of Approximating to the Square Root of a Number:

The following singular proposition is given by Murphy in his *Theory of Equations*, Art. 77, and is very characteristic of a mathematician, perhaps, the most original of modern times. The demonstration that follows is his own, somewhat simplified. Let N be the number, and let \sqrt{N} be between n and n + 1. Put $N - n^2 = a$, $(n + 1)^2 - n^2$, or, (2n + 1) = b. Take any proper fraction $\frac{u_0}{r_0}$, and let a series of fractions be successively formed by the law

$$u_{x + 1} = av_{x} + u_{x}, v_{x + 1} = bv_{x} + u_{x},$$

then $\frac{u_{x}}{v_{x}}$ converges to the decimal part of \sqrt{N} .
• For, $\frac{u_{x + 1}}{v_{x + 1}} = \frac{av_{x} + u_{x}}{bv_{x} + u_{x}}$, and is a proper fraction since $a < b$,

$$= \frac{a + \frac{u_{x}}{v_{x}}}{b + \frac{u_{x}}{v_{x}}}$$

Let then $y = \text{Limit } \frac{u_{x}}{v_{x}} = \text{Limit } \frac{u_{x + 1}}{v_{x + 1}};$
then ultimately $y = \frac{a + y}{b + y}$
or, $y^{2} + (b - 1) y = a$
and $y^{2} + 2ay + n^{2} = N$.
whence $y = -n + \sqrt{N}$,
since the positive sign must be taken.

Hence. Limit $\frac{u_x}{v_x} = \sqrt{N} - n$,

or $\frac{u_x}{v_x}$ converges to the decimal part of \sqrt{N} .

Murphy gives as an example $\sqrt{10}$. Assume the fraction $\frac{1}{6}$; then a = 1, b = 7, and the successive convergents are $\frac{1}{6}, \frac{7}{43}, \frac{25}{154}, \frac{179}{1103}, \frac{1282}{7900}, \dots$