_

Book I.

Proposition B. Theorem.

If two triangles have two angles of the one equal to two angles of the other, each to each, and the sides adjacent to the equal angles in each also equal; then must the triangles be equal in all respects.

In As ABC, DEF.

let $\angle ABC = \angle DEF$, and $\angle ACB = \angle DFE$, and BC = EF. Then must AB = DE, and AC = DF, and $\angle BAC = \angle EDF$.

For if $\triangle DEF$ be applied to $\triangle ABC$, so that E coincides with B, and EF falls on BC;

then : EF = BC, .: F will coincide with C;

and $\therefore \angle DEF = \angle ABC$, $\therefore ED$ will fall on BA;

 \therefore D will fall on BA or BA produced.

Again, $\therefore \angle DFE = \angle ACB$, $\therefore FD$ will fall on CA;

.: D will fall on CA or CA produced.

.: D must coincide with A, the only pt. common to BA and CA.

.. DE will coincide with and .. is equal to AB,

and DF. AC,

and \(EDF..... \(BAC, \)

and $\triangle DEF$ $\triangle ABC$;

and .: the triangles are equal in all respects.

Q. E. D

Cor. Hence, by a process like that in Prop. A, we can prove the following theorem:

If two angles of a triangle be equal the sides which subtend them are also equal (Rucl. I. 6.)

086

d set çnate

I. 4.

x. 1. E.D.

r. rom

op-