For the Pearl.
STANZASTO****

And can it bothat thua we part,

 Are all our happy metiuga done, hill we no morre in converse aweet,Whe fuot or lime make lightly run?
Wilt thou the friendy hand extend
No more, which of I 've fondly prest, And must the fecelings he forgot, Which lit thy fuce und warm'd thy breas :

When we in happice hours met,
In acenes that must he crer dear
With hearts unclouded by a care,
And eyes undinm'ul by anrrow's tear:
Shall I ne'er liear nue kindly word
Fall from thosc cherub lips of thine,
Whose winaing accelits once were breathe
To charm no ollacr ears han mine?
Then lie it se: why should 1 weep, Of why my spirit iecl a gloors, For oue inconstumt as the bec Thint rangos where sweet how'rs bloom:
The hallow'd love I've felt for thee Cmane'er decay, slill it shall dwell, Decp liedden in my hearl's recessMy tonguo its depths shall uever iell.

When in the night of clungeful years, Joulh's denrest joys I wall forges, Thy face with all its loveliness stinill linger in iny mem'ry yer, and while the fuec of other fricule Shall tend to wean thy heart from mes Fach kiadly word and smiling face
Shull wake my spirits love for thee

Derentuer lesa.

Far the Pearl.

ON MATTER.

I ber to forward for insertion in tho Colonal Poarl part of an able Essaly tately reinl in the Lecturo Roon of the Cotehester 1.itorary and Scicntific Society, by Adams Archibahd, Eisf. of Museruodaboit, which will, 1 have no doult, he found interesting to the philosophical portion of your readers.

A Member.
Truro, March 28/h, 1839.
on the properties of matter and their anjucation to the rronuction of the sides.
In treating of any science which is grounded apon pliysical facts and appearances, two courses are generally open. We may begin with a statement of the results observed, and, hy gradual insestirit:tion, estrieate from them the principles upon which they depend or clse, if these primeiples have been ascertained, we may begin by staing then, and may deduce from them the consequenees whirh would fullow on the supposition of their truta; and timaly, by comparing these comequences with the appearanecs presented by mature, and finding them to correspond, we may sattisfy ourselves of the truth of hose priaciphes whith we origimally issumed. The former is nevessarily the course of discovery; the later is When the most conciso and convenient method of instruction, ater the discosery has been made. In some casos there is little practieal distinetion between the two methods. For instance, the finndamemal principle of hydrostatics is the equal pressure of find's in "ill directions, and the fiet that they do so press, is one of the firsi and most obvious results of obscrvation and cxperiment $;$ and, from the time that it is ascertaned, the experimental ind hypothotieal mode of disenssing the suhject may very nearly coincide. In proceeding to the consideration of the subject mater of the present address, we shall talio it for gramted that this society is in some gond degree acpuainted with those properties of matter upon which the varions phenomena of the tides are founded ; the explamation of which is the principral olject in the present address. I must, however, ulain ymu indugenee, while I name a fow of those properties which are bherent in all kinds of matter.
[Here Mr. A. procected to explain, in a very lucid nad satisfatory manner, the prinefipes which regulate the motions of bodies, and concludug this portion of his remarks with an caumoration of the propositions which constitute the theory of circular motion, he contimed as follows.]
Thesce are the theorents of ciroular motions, the two last of which are found by astronomers to be strictly observed by every hody of the planetary aml cometary system. For exampie, the perioctical time of Venus is 225 days, and that of the carth 365 , the squares of whith numbers are 50625 aml 133225 : aman, the dietances of Venus is to that of the earth as 72 to 100 , the cubes of whith numbers are 373248 and $1,000,000$; but as 50625 is to 133225 , so is $3732+5$ 10 $1,000,000$, that is, the squares of the periodical times are as the cuhes of their distauces very nearly: From whemes also it with easily appear that the bodies under the equator have the greatest centrifugal forec, which there acts in direct opposition to gravity, and diminishos towards the poles with the equares of the disinnees from the earth's axis. IIence also it is evident that, if ever the earth was in a fluad state, and ut rest,
tre; but if, in that fluid state, it revolved aboant its asis, it must necessurily assume the figure, not of a perfect sphere or globe, but of an oblate spheriod, flated towards hoth poles; as is manifestly shown by experinent; but as your tine is limited, we will not be rable to enter inte tho minutic of this demonstration, but merely mention the conclusions drawn from these data, which are the following; that is to say: Supposing the earth to have been in a fluid state, and at the same time revolving upon its axis, so as to make a complete revolution in 24 bours, the centrifugal force would so far have counteracted the force of gravity at the equator, as to have nade the ceutrifugal force to gravity, as 1 to 289 , and the axis of the ourth to the equitorial diameter, as 202 to 230 , and that if the time of its revolution, instead of 24 hoors, had been but 8.4 minutes and 43 seconds, the centrifugal foroe would have then been oqual to gravity: and also, that the moon's periodical revolution round the common centre of gravity, between the earth and her would, by a similar computation, be completed in 27.3 -10 dhys. Since the enrth and moon act upon each other by attraction, it is evident that, unless prevented by some counteracting force, they would mect in their common cente of gravity; but such a counteracting foree is found in the fact that both these bodies reculvo about that point, aud preserve their distance from each other by their centrifugal forees, generated by such revolution: whence the cenire of gravity-and not the centre of the carth-is that point which the moon regards in her periodical re volution; and were there no oflher bodies in the heaveus but the earth and inoon, this common centre of gravity would be at rest, or a fixed paint. But, siice the large body of the sun coinmands, by the same power of attraction, the earth and moon to revolve atoout himself, it will follow, that the point, which would otherwise be at rest, is that which uust describe the circle, or grand oribit sound the sun; becauso no other point between the earth and moon can keep always at the same distance from the sun, on account of the mutual revolutions of these bodics about that point al the same tine that they are carried ubout the sun. Now, since it has been demonstrated that the power of gravity at the distance of the moon, is to that upon the earth's surface, is 1 is to 3600 , and that the earth will grasiate or tend towards the moon in the inverse ratio of her quantity of mater, and that the mater of the calth is to that of the nicon as 40 to 1 , it follows, that the body of the earth will tend towards the moon with a force equal to 1-144000 part of the force of gravity upon the earth's surface, and that they are preseried in their orbits round their common centre of gravity by these central forces.' Hence it will be very evidem, considering duat these forces are in the inverse ratio of the spuaros of the distance, that the side of the earth most contiguous to the moon, will he more strongly attracted than the -centre of he earth ; iud also, that the centre of the earth will, in like manucr, Lo atrracted with more foree than the.surface of it opposite to the moon, these three different forces being as the squares of the numbers 91 , 60 , and 59 , or as the numbers 3721,3600 and 315-1, and therefore, if the giobe of the carth were a fluid mass, lie surfice next to the mona would be brought nearer to her, and the rpposite sitc, being influenced by a lesser forec of atraction, and a greater centritugal forec (occasioned by its revolution round the conunon centre of gravity at the greatest distance from that puint) will be made to recede from the centre, and that the globuhar lowm of the earth will be elongated in the line of direction beWem the errth and moon ; but, as theso elevations of the water are pooduced by the different forces eserted by the moon's attraction upon the difterent parts, diminishing the effect of gravitation towards the centre, in the line of direction aforosaid, it follows that the parts of the earth's surface nincty degrees distant will, in the sanie ratio, approach the centre to restore the equitibrimm ; without which it would be impossible for the action of the moon to effect the elevations under and opposite to her. This dfiect is produced with great facility upon the supposition of the glohe's being a fluid body throughont, but will vary with the circunstanecs when otherwise, and we can, from this data, casily perceive the renson why no sensible tides are to be found in freshwater lakes, althongh covering a large pertion of the carth's surlice : for let it be supposed that there is inmediately mader the mawn, a bake, covering sisty degrees of the earth's surfice, which will he over 4000 miles dimmeter; now it will be evident that, indepusiontly of the commun argment that the time of the moon's atrraction over cvery part of the lake's surface, are so nearly par ralled that all parts of it would be affected with an equal force, it will appear that the waters, at ninety degrecs distance, by moving towards the centre, cannot conmunicate with the lake, nor co-opeate with the moon's ntraction in producing a tide under her, and consequenty no sensible tides are found in fresh water lakes, but consequence of the moon's atraction exerting its iuflnence upor the lake and solide earth, without raising the waters upon that side of the globe next to her, it may reasonably be sinpposed that a ercater tide will in consequence be produced upon the opposite side. What has been said with regard to the tides has boen rereferred sololy to the infuevice of the moon, but it will be found hat the large body of the sun has (by the operation of the same law y) an infuence, in every particular corresponding wit fer in law in producing the tides; but altiough the quantity of mat ter in the sun is so very great, compared with that of the moon,
as to nake his aggregnte anoou: of alraction more than 100 times
greater than that of the moon, jet when we consider that the tides re not produced by the total anount of attraction, but by the difference upon the difierent parts of the globe, inversely as the squares of the distance, and that the semidiameter or diameter of the earth when compared writh the distance of the sunis but about 1-400 part of what it would be compared with the moon's distace, it will folow that the effect produced in raising the tides is not more thid n of that produced by the moon. Hence we find, that at the time of the moon's conjunction, at the change, or opposition, at the full, we hare tidesproduced hy the united inlluence of the sun and moon, and these are usually denomianted spring tides; but, when the moon is in her quadratures, or the sun at right angles with the line of direction between the earth and moon, his influence will hen be exerted in endeavouring to produce tides under and opposte to hinn at ninety degrees from the tides raised by the moon; and his power being about one fourth of that of the moon, or one fith of their joint force, it follows, that the tides raised by the woon's influence alone will then be diminished by the action of the sun, and will be but threeffifths of what they were at the full and change of the moon, and these are called neap tides. These effects would be uniform at the same places, if the surface of the globe were covered with water, and the plane of the ecliptic were coincident with that of the equator, and the plane of the moon's orbit round the common centre of gravily between her and the earth coincided with that of see ecliptic, which that common centre of gravity describes round the sun, and that the ecliptic, as well as the orbit of the moon, were perfect cipcles; but as these bypotheses are all at varkince with the ficts, and it is ascertained that the surface of the globe exhibits hand and water in every pos-s. sible variety of form and location, and that the axis. of the earth being inclined to the eliptic about $23^{\bullet} 25^{4}$, causing the equator to form a smilar angle will the ecliptic, and the moon's orbit intersecting the ecliptic in two points called the moon's nodes, and forming an angle with it of $5^{\circ} 17^{\prime}$, and that the coliptic, as well as the moon's orbit round the earth, is in the form of an ellipse, varying the distance of these bodies from each other in describing the difierent parts of their orbits respectively, we therefore find that the tides vary much in the same places, and at the same times of the moon's periodical revolutions, according to the moon's obliquity, or its contiguity with respect to the earth and sun, and that the highest tides take place in, northern latitudes, esceeding the greatest degree of the sun's and moon's declination, on tha side of the earth inmediarely under the moon, when the sun and she lave attained their greatest northern declinations, and, because the opposite tides are thein as far south of the equator, as the sun and moon are north of it, the next tide with be produced by the fluence of attracion operating oblipuely in an angle with the perpendicular, double of that of the sum and moon's declination. and that, when the tides are referred merely to the moon's influence, the tides in the hemisphere over which she is vertical in the night, will be higher than the following day tide, which bus frequently becn matter of speculation and inquiry ; but, as this cannot take place in its fullest extent by the sun and mon in conjunction, excepting at the change, when both Lodies may be vertical on the tropic of Cascer, upon the 21 st of June at mid-day, the night tide will then be the least, or less than the day tide, at that place, or in any place north of the equator in that meridian: and the greatest possible tides occur when the perigce of the moon, or her least distance from the carlh, coucurs with the preceding circumstances at the time of the full or change of the moon, and also when these circumstances happen when the earth is in or near the perihelion of the ecliptic, when the grentest possible force of attraction, eserted upon the earth by both sun and nooon, in conseguence of their proxiaity, prevails.

To be consinucd.

Poetry and Steam.---In an interesting paper in the Musical World, eutited " Words fur Composers,", Leigh Hunt says ---Beautiful, truly, is it to see what noble poets we have had in hese latter days, and with what abundant glory they have refued the idle fears of an extinctiop of imagination in consequence of the progress of science: Fancy steam palting out the stars ! or the wheels of the very printing-press running over and crushing all the hearts, doves, and loves in Christendom ! for till you did that, how were you to put out poetry? Why the primingpress and the steam-carriage are themselves poetry-forms, made visible, of the aspirations of the mind of men; and they shake accordingly the souts of those who behold them. See the rotary mystery working in the printing-room-the naccountable and intangible god, Fire, giving it force against the old negatire deity, 'lime. See the huge, black, many-wheeled giont, the steam-carriage, smoking over the country like some mammoth of a centipede, and swallowing up that other ancient obstacle, Space---and Time with him! and then suppress, if you can, those very thonghts of human good, and eternity, and the might and beauty of the universe, which it is the most puetical office of poetry to keep alive and burning.'

Walchius thought it possible to contrive a trunk, or hollow pipe, that should preserve the voice entirely for certain hours, or days,

