Exponential Theorem.

1. Find two expressions each for the coefficients of x^2 , x^3 , and x^n in the development of $e^a e^x$, and show their identity.

2. Develop e^{mx} in powers of x to six terms.

3. What is the coefficient of $x^m y^n$ in the development of e^{x+y} ? In that of e^{x-y} ?

4. Multiply the two developments:

$$e^{x} = 1 + x + \frac{x^{2}}{1 \cdot 2} + \frac{x^{3}}{3!} + \dots$$

 $e^{-x} = 1 - x + \frac{x^{2}}{1 \cdot 2} - \frac{x^{3}}{3!} + \dots$

and show by what relations among the coefficients the product reduces identically to unity.

5. Show by what relations the development of e^{2x} becomes identical with the square of that of e^x .

Logarithms and Logarithmic Series.

7. Express the logarithm of the continued product of all the terms of a geometrical progression.

Calling b the arbitrary base of the system of logarithms, solve the following equations so as to express x in terms of y:

2.	$\log x$	=	?/.	3.	$\log x$	_	ay.
4.	$\log 2x$		у.	5.	$\log mx$	=	a + y.
6.	$\log ax$		my.	7.	$\log x^2$	=	y.
	$\log x^n$			9.	<i>y</i>	=	$b^{\log x}$.
10.	\mathcal{Y}	_	$a^{\log x}$.	11.	$ma^{\log x}$		y^2 .

Reduce to their simplest form the expressions:

12. $\frac{a^{\log c}}{c^{\log a}}$

13. 201 hog c - clog a.

Prove the identities:

14. $m^y x^y = b^{y \log mx}$.

15. $\frac{a^{\log x_t \log y}}{m^{\log x_t \log y}} = x^{\log \frac{\alpha}{m}} y^{\log \frac{\alpha}{n}}.$