this point on, while in the other we shall Nowne it to P_{10}.
It has, as to the proper chord length. order to avound by experiment that in abrupt to avoid any ill effects from an body, frange in the position of the car ration of thempight to inclined, the eleon that of the outside rail should not gain 4. of an the inside more than about an hour a inch per second. At 60 miles exactly) in train will travel 90 ft . (88 ft . dinary rule this time, and with our ordegree rule for elevating at $1 / 2$ inch per respend of curvature, $3 / 4$ inch would corately, th to a $1^{\circ} 30^{\prime}$ curve. Proportionb_{6}, the distance for a 1° curve would length ft., and this would be our chord ${ }^{\text {speed is in a }} 60$ mile speed. But this than is not a safe one on curves of more longer chor thereabouts. And as the dition thrord length and resulting tranBents throws the curve inside its tanquently much more than the short. conse${ }^{\text {lng }} \mathrm{g}$ an ly lessening its efficiency in avoidPermissible obstacle, it is desirable and quite ength in to use a shorter chord curves and connection with the sharper On of a corresponding less elevaFoll outer rail
${ }^{\text {Following }}$ suggest out this reasoning the writquch as th some years ago that inasthe so centrifugal force varied as missible square of the speed, and the perverse speed varied about in the inbe proper of the degree of curvature, degre involving for for elevation should egree of curing the square root of the presented curvature, and that if E. rethe degrees the elevation in inches and D. Dle formules of curvature, then the simhot far mula $\mathrm{E}=\sqrt{\mathrm{D}}$ would give results etween 1° the best practice on curves bestimented and 10°. Engineering News estion, and very favorably on the sugIn use. In vie.
rder to avoid these considerations, but in unnecessary complication,

three standard chord lengths, $60^{\prime}, 45^{\prime}$ and 30^{\prime} will be used, the first for curves up to 3° or 4°, the second to 7°, and the third from 7° to 10°. Main line curves sharper than 10° are seldom used, and when they are resorted to are necessarily run over at very low speeds, and considerations other than centrifugal force, properly so called, make it desirable that the super-elevation should be still further reduced, hence, while it is still desirable to insert a transition of some kind, it is permissible to make it very short indeed. Our rule would give for a 16° curve, for instance, 4 ins. of elevation, while the older rule of $1 / 2 \mathrm{in}$. per degree would give 8 inches. This last is quite inadmissible, and the first more than will be found in good practice, and for the following reasons:-

Super-elevation counteracts the dynamical centrifugal force due to velocity, but there is a tendency to thrust against and override the outside rail of the
curve which, while it acts in the same direction, is quite independent of the centrifugal fonce, and is due to the obliquity of the car axles to the radius of the curve. At low speeds and on very sharp curves it is very much the most important component of the two, and no moderate amount of super-elevation will counteract it to any considerable extent, but rather the reverse, for the wheel is held on the track by contact of the outside flange against the head of the rail, and is constantly trying to climb up over it, and only prevented from doing so by the weight of the car upon its journal. Decrease this weight by tilting the car inwards until we throw all the weight on the inside rail, and the outside wheel will inevitably climb over and the car be derailed. It follows that on a sharp curve with excessive elevation it is safer to move at a speed sufficient to generate sufficient centrifugal force to equalize the weight on the two wheels, than it is to crawl around it, and actual experience proves the truth of this apparent paradox.

To return to our transition curve. We have established a 60 ft . chord for curves up to 3°, and for this curvature we shall have three chords terminating at points P_{1}, P_{2}, P_{3}.

Refer to Figure 2.-The mean curvature is $1^{\circ} 30^{\prime}$, and the total length 180 ft., giving a total deflection $2^{\circ} 42^{\prime}$ or 162 and a tangential angle for P_{3} of 162
or 54^{\prime}. As it has been shown that
the tangential angle to any point is proportional to the square of the distance of that point from the beginning of the transition curve, then the corresponding angles for the intermediate points P_{1} and P_{2} will be $(1 / 3)^{2}$ or $1-9$ and $(2 / 3)^{2}$ or $4-9$ respectively of the tangential angle at P_{3}, thus giving an angle of 6^{\prime} at P_{1} and 24^{1} at P_{2}. We have then for the 60 ft . chord transition the series of tangential angles:-

```
6\times12= =6'; 6' }\times\mp@subsup{2}{}{\prime2}=2\mp@subsup{4}{}{\prime}
    6
```

To run the curve by the transit we set up on the initial point P. and turn off these successive angles from the tangent produced. Arrived at P_{3}, the end of the transition for a 3° curve, we put in a hub. Setting up over it we sight back at P. and turn off for the tangent at Ps not $0^{\circ} 54^{\prime}$, but double this or $1^{\circ}, 48^{\prime}$ from which tangent we run in the 3° circular curve in the ordinary way. Arrived at the other end we simply reverse the process, or we may proceed as follows, still referring to fig. 2 At P_{3} the 3° curve produced would swing inside the transition and leave it at exactly the same rate that the transition left the tangent at P. Our angles from the tan-

