Pure Uni-Serial Abelian Equations.

Therefore

$$\begin{array}{l}
\left(R_{z}R_{1}^{-z}\right)^{\overline{n}} = (A_{z}A_{1}^{-s})(\phi_{z\sigma}\phi_{\sigma}^{-z})^{\frac{\theta}{n}} \dots (F_{z\beta}F_{\beta}^{-z})^{\frac{\theta}{n}} \\
\left(R_{ez}R_{\epsilon}^{-z}\right)^{\frac{1}{n}} = (A_{ez}A_{\epsilon}^{-z})(\phi_{ez\sigma}\phi_{\sigma}^{-z})^{\frac{\theta}{n}} \dots (F_{ez\beta}F_{\epsilon\beta}^{-z})^{\frac{\theta}{n}} \\
\end{array}\right)$$
(97)

and

۲y,

ty,

94)

ıe-

w,

)5)

6)

'a of

ıal

a

ed ıb-

ed

 \mathbf{ch} ıl-

of

sts

y.

th

he is

Because $(\phi_{z\sigma}\phi_{\sigma}^{-z})^{\frac{\sigma}{n}}$ and other corresponding expressions have been shown to be rational functions of the primitive n^{th} root of unity w, the two equations (97) correspond respectively to (3) and (5). If z be not prime to n, and yet not a multiple of n, it may be taken to be ev, where v is equal to $\frac{n}{y}$, y being one of the terms in the series (75) distinct from n, and w^e being the general primitive n^{th} root of unity. Then, just as we obtained the pair of equations (97) by means of (76), we can now, by means of (77), obtain the pair of equations

$$\begin{array}{c} (R_{ev}R_1^{-ev})^{\frac{1}{\sigma}} = (A_{ev}A_1^{-ev})(\phi_{ev\sigma}\phi_{\sigma}^{-ev})^{\frac{\sigma}{n}} \dots \\ (R_{cev}R_c^{-ev})^{\frac{1}{\sigma}} = (A_{cev}A_c^{-ev})(\phi_{cev\sigma}\phi_{c\sigma}^{-ev})^{\frac{\sigma}{n}} \dots \end{array}$$

$$\tag{98}$$

where w^c represents any one of the primitive n^{th} roots of unity. Because such expressions as $(\phi_{ev\sigma}\phi_{\sigma}^{-ev})^{\frac{\sigma}{n}}$ and $(\phi_{eev\sigma}\phi_{c\sigma}^{-ev})^{\frac{\sigma}{n}}$ are rational functions of w, the two equations (98) correspond respectively to (3) and (5). Finally, should z be a multiple of n, it may be taken to be zero. Then the equation corresponding to (3) is, q_1 being a rational function of w,

$$R_z^{\overline{n}} = q_1 R_1^{\overline{n}}$$
; or, since $z = 0$, $R_0^{\overline{1}} = q_1$.

But $R_0^{\frac{1}{s}}$ is rational. Therefore q_1 is rational. Therefore $q_1 = q_s$; in other words, q_1 undergoes no change when w becomes w^{ϵ} . Also $R_{\epsilon z}^{\frac{1}{n}} = R_0^{\frac{1}{n}} = q_{\epsilon}$. Therefore, since $R_e^{\frac{\pi}{n}} = 1$, $R_{ez}^{\frac{1}{n}} = q_e R_e^{\frac{z}{n}},$

which is the equation corresponding to (5). Therefore, whatever z be, the equation (5) subsists along with (3). Hence, by the Criterion in §10, the expression (73) is the root of a pure uni-serial Abelian equation of the n^{th} degree.

THE PURE UNI-SERIAL ABELIAN OF A DEGREE WHICH IS FOUR TIMES THE CONTINUED PRODUCT OF A NUMBER OF DISTINCT ODD PRIMES.

Fundamental Element of the Root.

§47. Let $n = 4m$,	where m is the continued	product	of the	distinct odd
Take	$s, t, \ldots, d, b.$			(99)
	$\sigma, \tau, \ldots, \delta, \beta,$			(100)

261