TABLE X. Rate Expression for the Manganese-Catalyzed Oxidation

Expressiona,b,c		рН	Investigators
d[S04 ² -]	= 44 [Mn(II)] ^{1.7} [S(IV)] ⁰ [H+] ⁰	3,4	Adapted from Hoather Good- eve (1934)
d[S04 ² -]	= 1.7 x 10^{-5} [Mn(II)] [S(IV)] [H ⁺] 0^{-1}	2.2	Adapted from Neytzell-de Wilde and Traverner (1958)
d[S04 ² -] =	= 8[Mn(II)] ² [S(IV)] ⁰	3-4	Adapted from Coughanowr and Krause (1965); dependence on pH not reported

aThe units are: liter, mole, second.

^bConcentrations shown with zero power (e.g., $[S(IV)]^0$) indicate that the investigators found the rate to be independent of those species. Note that any concentration to the zero power is equal to unity.

^cThe term $[H^+]_0^{-1}$ indicates that the rate is dependent only on the inverse of the initial H^+ ion concentration; changes in H^+ concentration after the reaction is in progress do not affect the rate.