which x=1. Let r be radius of the circle; x, y sides of rectangle; then we are to make $\pi r^2 - xy$ a minimum where $x^2 + y^2 = 4r^2$. Substitute for y and proceed as before, when x=y, or greatest rectangle is a square.

3. In the solution of $ax^2 + bx + c = 0$, interpret the results when

(1)
$$a=b=0$$
; (2) $b^2=4ac$.

- (1) Roots are ∞, ∞. (Todhunter's Larger Algebra, secs. 342 and 343.)
- (2) Roots are real and unequal, real and equal, or imaginary.
- 4. If α , β be the roots of $x^2 + px + q = 0$, and α' , β' those of $x^2 + px + \frac{1}{9}(2p^2 + q) = 0$, then α , α' , β' , β form an Arithmetic series.

$$\alpha = \frac{\sqrt{p^2 - 4q - p}}{2}, \quad \beta = \text{etc.}$$

$$\alpha' = \frac{\sqrt{p^2 - 4q - 3p}}{6}, \quad \beta' = \text{etc.}$$

We have $\alpha+\beta'=2\alpha'$, $\alpha'+\beta=2\beta'$; ... etc.

5. Determine the conditions that $ax^4 + bx^2 + c$ and $cx^4 + bx^2 + a$ may have a common divisor of the form $x^2 + px + q$.

Divide $ax^4 + bx^2 + c$ by $x^2 + px + q$, and put remainder $x^2(ap^2 - aq + b) + apqx + c = 0$; similarly with $cx^3 + bx^2 + a$ we find

$$x^2(cp^2-cq+b)+cpqx+a=0.$$

Eliminating in turn first and last terms of these expressions we find two values for x, equating which gives condition

$$\{(p^2-q)(a+c)+b\}^2+p^2q^2b(a+c)=0.$$

6. When is one quantity said to vary as another?

If $x \propto y \propto z$, show that constants k, l, m exist such that

$$l(x-ky)=m(y-lz)=k(z-mx).$$

Bookwork.

Solving between x and y, x=k'y where k' is a constant, and so on; $x \propto y$ by definition, and so for z.

7. The sum of n terms of a certain series is $\frac{1}{3}n(n+1)(n+2)$; shew that the sum of the differences between the 1st and 2nd, 2nd and 3rd, $(n-1)^{\text{th}}$ and n^{th} terms is

$$(n-1)(n+2).$$

$$= \frac{n(n+1)(n+2)}{3} - \frac{(n-1)n(n+1)}{3} = n^3 + n;$$
... sum is required of
$$\left\{ (2^3+2) - (1^4+1) \right\} + \dots + \left\{ (n^2+n) - \left((n-1)^2 + n - 1\right) \right\}$$

$$= 2(2+3+\dots+n) = (n-1)(n+2).$$

The n^{th} term of above series = $S_n - S_{n-1}$

8. Find the sum to n terms of a Geometric series, having given the first term and common ratio.

If between each pair of the quantities x, x^2 ; x, x^3 ; x, x^4 ;....n Geometric means be inserted, and r_1 , r_2 be the common ratios, then

$$\frac{r_2}{r_1} + \frac{r_3}{r_2} + \dots + \frac{r_{n+1}}{r_n} = n \cdot x^{\frac{1}{n+1}}.$$

Bookwork.

For the first series,

$$xr_1^{n+1}=x^2$$
, $r_1=x^{\frac{1}{n+1}}$;

for the second

$$xr_2^{n+1} = x^3$$
, $\therefore r_2 = x^{\frac{2}{n+1}}$, etc.;
 $\therefore \frac{r_2}{r_1} = x^{\frac{1}{n+1}}$, and sum $= n \cdot x^{\frac{1}{n+1}}$.

9. In forming the combination of n things r together, find for what value of r the number of combinations is greatest.

A committee of 8 is to be selected by taking a certain number (a) from a party of 13, and the remainder from a party of 8. What is the value of a that the selections may be made in the greatest number of ways; and how often will A of the first party and B of the second party find themselves in company?

Bookwork.

The value of a for which the number of combinations is greatest is 6 or 7. When a=6, 5 other men may be chosen from the

first party in
$$\frac{12}{5}$$
 put A in each of these,

one can be selected from the second party in 8 ways; put B along with each of them, so that on the whole when a=6, A and B will

be together in
$$\frac{12}{5} \times 8$$
 ways. Similarly when $a = 7$