

Faculty of Engineering

The Faculty of Applied Science (renamed Engineering in 1948) began operations in 1913. The first graduating class was in 1914 and included only seven graduands in civil engineering. From this modest beginning the faculty has expanded to include 1,280 full-time undergraduate students and 149 full-time graduate students.

Engineering graduates are engaged in careers in all Canadian provinces as well as in many parts of the western world. More than half of the membership in the Association of Professional Engineers, Geologists and Geophysicists of Alberta are graduates of the University of Alberta, and the total engineering membership of the body is very close

to the number of graduates from the Faculty of Engineering since its incention

The faculty is made up of the departments of chemical, civil, electrical, mechanical and mineral engineering. The past few years have seen major changes in all curricula to adjust to the broadening scientific base and rapid development in sophistication of professional engineering practice.

Members of the teaching staff are actively engaged in research and are also concerned with maintaining contacts with advanced current engineering techniques. A prominent example of engineering research is the work of the late Dr. Karl Clark who worked for many

years in the department of mining and metallurgy, now incorporated with the division of petroleum engineering into the department of mineral engineering.

Early in his career he recognized the potential of the Athabasca Oil Sands and devoted the major portion of his research activities to the development of a solution to the problem of extracting oil from the sand. The result the hot water flotation process is being utilized today

The Faculty of Engineering is aware of the need for a liberal education and offers courses in the areas of fundamental engineering, science, human relations, public relations, and communications.

Dean Ford

Dean George Ford, speaking as an engineer, once said that engineering training should provide a "liberal education" in the present technical age. An engineering education "should provide an excellent base for a bank manager, an insurance adjuster, service manager and so forth," he said.

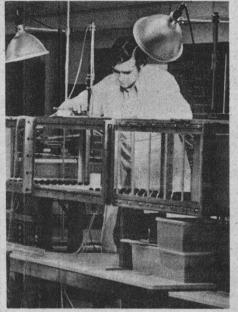
Dean Ford, 54, has a keen interest in the oil sands issue and stresses that the engineering profession can play a major role, through universities and private enterprise, towards developing the technology to recover more of Alberta's oil sands and coal resources.

He is a member of an advisory science and engineering committee which hopes to participate in thedefining of provincial government resource development policies.

The committee's intent, according to Dean Ford, is to map out a role for the engineering profession and the university in planning the development of Alberta's resources.

development of Alberta's resources.

The dean has criticized engineering curriculums for putting too much stress upon technical education and too little on having students "learning to learn."


Society offers a world of "chanding demands" where problems are not always clearly defined and scientific information is incomplete. Engineers must be able to adjust, he

His own engineering education began at the University of Alberta in the '40's and continued at Stanford University, Stanford, California. After his return he was appointed an assistant professor of civil engineering in 1948, an associate professor in 1953 and professor of applied mechanics in 1957.

In 1959, the university established the department of mechanical engineering and Dr. Ford was appointed chairman and professor of mechanical engineering. He was appointed Dean, Faculty of Engineering, in 1971.

ENGINEERING

MINERAL ENGINEERING	Rm. No.	Electromechanical oscillator	13
	Chem/Min 3, 108-110	Strength tester	
Assaying of ores		Wound rotor induction motor test	
Mineral processing	180	Primitive induction motor Power network analyzer	EB 54
Metal fatigue testing	100	Holographic displays	
Thermal properties of metals and	: 178	Laser communication	35 45
non-metals.	- 1/0	CO2 laser	43
Field emission microscopy	174	Microwave technology	EB 43.
Electron Microscopy Rock Mechanics	210	Laser plasma fusion studies	EB 45
Mineral Processing	208	Laser induced gas breakdown	LB 43
Metallic Corrosion	304	Organ preservation studies	EB 45
Chemical-analysis by X-ray	317	Microwave heating	LD 43
and atomic absorption		Dielectric measurements	
Structures of metals and	672	Simulation of an automobile	
alloys by microscopy		suspension system	55
Scanning electron microscopy	679	Bicycle ergometer	
Gas flor through drill cores	656	Closed loop motor control demonstration	
Reservoir simulator for predicting		Wildlife tracking (Telemetry)	
oil and gas flow		Computer simulation of rocket launch	EB 54
Melting and casting of	704	Radio Astronomy (slide show)	25
metals and alloys			
Mechanical properties measurements	/12	CIVIL ENGINEERING 7	
X-ray diffraction	717	Hydraulics Engineering Lab:	
Properties of tar sands	774	Thermal pollution	
		Mobile boundary hydraulics	
MECHANICAL ENGINEERING	Mech. Eng. Bldg.	Laser doppler velocity	
	Ground flr. Lev. 1	Laser transit and communicator	
Clothing heat losses	West entry	Orthophoto mapping	
Solar heating			
Fatigue life testing	Rm. 1-10	Structural Engineering Lab:	
Cyclic loading of nylon rope		Big testing machine	
High frequency fatigue of welded join	its	Joist specimens	
400,000 pound testing machine		Prestressed concrete beams	
Impact testing of hockey helmets	Rm. 1-38	Steel specimens	
Vibration isolation		Timber	
Electrodynamic shaker systems		Test relating to tal buildings	
Air track demonstration			
"Road" testing	Rm. 1-27	Geotechnical Group Displays:	
Air pollution by engine exhaust		Frank Slide studies	yann a
Gas and steam turbines		Pit slope analysis	1941.0kg
	2nd flr. Lev. 2	Earth-filled dams	
Teaching engineering design	W. lounge	Tar sands research	
Industrial engineering	& corridor	CHEMICAL ENGINEERING	Cl (it pi)
Numerically controlled nulling machi-	ne		Chem Min Bld
Thermosiphon for ice dams		Stirred Tank Heater Control of heat transfer process	21.
Ice formation	P 2.1		
Arctic engineering	Rm.2-1	Computer controlled distillation column	
Photoelastic stress analysis	Rm. 2-3 Rm. 2-9	Liquid level control Chemical Reactor experiment	7
Lubrication research	Rm. 2-9 Rm.2-11	Evaluation of energy resources	
Noise control demonstration	FM.2-11	Sulfur Recovery	35
Hearing tests	Rm. 2-14	Used in natural gas processing	331
Wind tunnel	Rm. 3-31	Infrared Spectroscopy	
Traffic noise	Rm. 4-37	Catalysis research	36-
Interferometer for heat transfer Water channel visualization	IVII. 4-37	Pressure losses in fittings	35
of wind	Rm. 5-23	Lunar Landing Simulator	47.
Frost tunnel	Rm. 6-23	Process operator's console	7/.
Low temperature testing	Km. 0-23	Hybrid computer	42
electrical engineering	Main Eng. Bldg.	What are you (really) drinking?	45
Electric arc discharges	EB-B53	Natural gas processing	81.
Electric "WIND"		Hydrate formation	07.
Swall IACORS I ADDED		Salubility studies	

Analyzing airflow patterns.

Unique concept

Hungry? Want a place to grab a snack? Or perhaps a break from viewing the displays of the Open House?

HUB, a unique housing complex situated in the northeast section of the campus (number 18 on the centre fold map) may have the answer!

Enclosed under one of the longest malls in the world are 25 commercial facilities ranging from a variety of restaurants (Chinese food, pizza, fish and chips, hamburgers, hot dogs) and clothing stores, to a travel agency, book store, and plant 'cupboard'. The glass-enclosed mall stretches for nearly 1,000 feet and contains several recreation and lounging areas as well as the shops.

In addition, the recently-opened licensed restaurant in HUB offers a casual atmosphere where one can relax and have a bite to eat.

Owned and operated by the Students' Union, HUB is a unique concept in apartment housing on a university campus. Its 450 suites, ranging from bachelor to two and four-man units, can accommodate a total of 1,000 tenants.

Energy for society's wheels

Energy. Most people used to think of it in terms of something supplied by their favourite breakfast cereal.

Now the term is more apt to be used in reference to a power source to keep the wheels of society moving. With conventional fossil fuel sources fast becoming depleted and as energy bills rise, the search for greater efficiency in the production and use of conventional sources and for alternate sources takes on new meaning. Energy becomes a topic of interest to everyone.

This is particularly true in Alberta "Canada's energy province." And, as Alberta's largest post-secondary educational and research institution, the University of Alberta is naturally involved in a great deal of energy research.

The research is of a wide variety. It ranges from a study of the way heavy water is produced for Canada's nuclear power plants. It also deals with some of the unpleasant byproducts of society's immense appetite for energy.

In room 1-22 of the east wing of the Chemistry Building—12 on the centre fold map a physical chemistry display will be devoted to three energy-related experiments. One demonstrates the extraction of bitumen from the Athabasca Tar Sands on a laboratory scale. Another experiment demonstrates the extraction by a method suitable to be undertaken on an industrial scale. A third shows a further step in the processing of the bitumen extracted from the tar sands its separation into fractions.

Oil wells drilled into a petroleum reservoir remove only that oil that is easy and therfore commercially profitable to remove. As the price paid for crude rises it becomes commercially profitable to remove more oil. This is done by a number of "enhanced recovery" techniques. By improving these techniques the extraction efficiency of Alberta's oil reservoirs can be increased.

The university's department of mineral engineering has a petroleum reservoir simulator which is used for just this purpose. Located in Room 656 of the Chemistry/Mineral Building 3 on the centre fold map this apparatus shows, with vivid contrast, the patterns made in an underground oil reservoir when a fluid such as water is used to enhance the recovery by pushing the

oil towards producing oil wells.

In Room 1-10 of the Mechanical Engineering Building 9 on the centre fold Map another group of engineers will be on hand to reveal a contribution they make to the oil industry. Their display shows how mechanical engineers do fatigue testing of oil well components in corrosive situations.

The university's chemical engineers are involved in a research project which involves an intensive study of the method used for the production of the "heavy water" used in the CANDU nuclear power generation process. They are looking at the process with an eye to reducing its cost. This display and a related one dealing with improved processing of Alberta's natural gas, are located on

Continued on page 8.