1013.7. con't

 b. Non-"composite" ceramic materials in crude or semi-fabricated form, composed of borides of titanium with a density of 98% or more of the theoretical density; *Note:*

Item 1013.7.b. does not control abrasives.

- Ceramic-ceramic "composite" materials with a glass or oxide-"matrix" and reinforced with fibres made from any of the following systems:
 - 1. Si-N;
 - 2. Si-C;
 - 3. Si-Al-O-N; or
 - 4. Si-O-N;
 - having a specific tensile strength exceeding 12.7×10^3 m;
 - d. Ceramic-ceramic "composite" materials, with or without a continuous metallic phase, incorporating particles, whiskers or fibres, where carbides or nitrides of silicon, zirconium or boron form the "matrix";
 - e. Precursor materials (i.e., special purpose polymeric or metallo-organic materials) for producing any phase or phases of the materials controlled by 1013.7.c., as follows:
 - 1. Polydiorganosilanes (for producing silicon carbide);
 - 2. Polysilazanes (for producing silicon nitride);
 - Polycarbosilazanes (for producing ceramics with silicon, carbon and nitrogen components);
 - f. Ceramic-ceramic "composite" materials with an oxide or glass "matrix" reinforced with continuous fibres from any of the following systems:
 - 1. Al₂O₃; or
 - 2. Si-C-N.

Note:

1013.7.f. does not control "composites" containing fibres from these systems with a fibre tensile strength of less than 700 MPa at 1,273 K (1,000° C) or fibre tensile creep resistance of more than 1% creep strain at 100 MPa load and 1,273 K (1,000° C) for 100 hours.

8. Non-fluorinated polymeric substances, as follows:

- a. 1. Bismaleimides;
 - 2. Aromatic polyamide-imides;
 - 3. Aromatic polyimides;
 - Aromatic polyetherimides having a glass transition temperature (T_g) exceeding 513 K (240°C) as measured by the wet method;

Note:

1013.8.a. does not control non-fusible compression moulding powders or moulded forms.

- b. Thermoplastic liquid crystal copolymers having a heat distortion temperature exceeding 523 K (250°C) measured according to ASTM D-648, method A, or national equivalents, with a load of 1.82 N/mm² and composed of:
 1. Any of the following:
 - a) Phenylene, biphenylene or naphthalene; or
 - b) Methyl, tertiary-butyl or phenyl substituted phenylene, biphenylene or naphthalene; and
 - 2. Any of the following acids:
 - a) Terephthalic acid;
 - b) 6-hydroxy-2 naphthoic acid; or
 - c) 4-hydroxybenzoic acid;
- c. Polyarylene ether ketones, as follows:
 - 1. Polyether ether ketone (PEEK);
 - 2. Polyether ketone ketone (PEKK);
 - 3. Polyether ketone (PEK);
 - 4. Polyether ketone ether ketone ketone (PEKEKK);

- d. Polyarylene ketones;
- e. Polyarylene sulphides, where the arylene group is biphenylene, triphenylene or combinations thereof;
- f. Polybiphenylenethersulphone. Technical Note: The glass transition temperature (Tg) for 1013.8 materials is determined using the method described in ASTM D 3418 using the dry method.

9. Unprocessed fluorinated compounds, as follows:

- a. Copolymers of vinylidene fluoride having 75% or more beta crystalline structure without stretching;
- b. Fluorinated polyimides containing 10% or more of combined fluorine;
- c. Fluorinated phosphazene elastomers containing 30% or more of combined fluorine.

 "Fibrous and filamentary materials" which may be used in organic "matrix", metallic "matrix" or carbon "matrix" "composite" structures or laminates, as follows:

- a. Organic "fibrous or filamentary materials" having all of the following:
 - 1. A specific modulus exceeding 12.7×10^6 m; and
 - 2. A specific tensile strength exceeding 23.5×10^4 m;

Note:

1013.10.a. does not control polyethylene.

- b. Carbon "fibrous or filamentary materials", having all of the following:
 - 1. A specific modulus exceeding 12.7×10^6 m; and
 - 2. A specific tensile strength exceeding 23.5×10^4 m; Technical Note:

Properties for materials described in 1013.10.b. should be determined using SACMA recommended methods SRM 12 to 17, or national equivalent tow tests, such as Japanese Industrial Standard JIS-R-7601, Paragraph 6.6.2., and based on lot average. **Note:**

1013.10.b. does not control fabric made from "fibrous or filamentary materials" for the repair of aircraft structures or laminates, in which the size of individual sheets does not exceed 50 cm \times 90 cm.

- c. Inorganic "fibrous or filamentary materials", having all of the following:
 - 1. A specific modulus exceeding $2.54 \times 10^{\circ}$ m; and
 - A melting, decomposition or sublimation point exceeding 1,922 K (1,649°C) in an inert environment;

Note:

1013.10.c. does not control .

- Discontinuous, multiphase, polycrystalline alumina fibres in chopped fibre or random mat form, containing 3 weight percent or more silica, with a specific modulus of less than 10 x 10⁶ m;
 Molybdenum and molybdenum alloy fibres;
- 3. Boron fibres:
- Discontinuous ceramic fibres with a melting, decomposition or sublimation point lower than 2,043 K (1,770°C) in an inert environment.
- d. "Fibrous or filamentary materials":
 - 1. Composed of any of the following:
 - a) Polyetherimides controlled by 1013.8.a; or
 - b) Materials controlled by 1013.8.b. to 1013.8.f.; or
 - Composed of materials controlled by 1013.10.d.1.a. or 1013.10.d.1.b). and "commingled" with other fibres controlled by 1013.10.a., 1013.10.b. or 1013.10.c.;
- e. Resin-impregnated or pitch-impregnated fibres (prepregs), metal or carbon-coated fibres (preforms) or "carbon fibre preforms", as follows:
 - 1. Made from "fibrous or filamentary materials" controlled by 1013.10.a., 1013.10.b. or 1013.10.c.;