HOW LUMBER SHRINKS.

A
 dhout the manner in which lumber w.s "hatuled" acrons the monntains dowin in his coments. "Why". s.lld he. "they sall it atcen, leave it in the sun, and wif
 In lexs thatn at minute, and and to the other ade of the mountain before sunvet." "Whan," asked a bs statrder, would be the result if n was attacked in its widd carcer by a shower of rion, would it come batk ?" Ilete was at poser, but the tatceller was equal to the occasion amd replied: " No, it would turn on the other side and contunteits cours.
The subje.t of the comeration of limber is an interesting one to wood-wotkers, and the doors and shutters

In man: of our mushroom cities are satd to come of the lursics in retaliation of the persistent disobedience of the natural law of slorinkighe. An examination of the en "f ath oak or beech tree will shon the arransement of tos structure. It consints of a mass of longatudinal fimrous tubes, arrathacel in irregralar circles that are bound together by means of radial strings or shoots, which hatre been aabously named : they are the "siluer grains" of the carpenter, or the "medallary rats" of the hotanist, and ate in reality, the same as end wook, and have to be considered as such, just ats much as the longitudinat woody fiare, in order to cuncerstand its action. From this it will be seen that the lateral comraction or collap. sing of the longritudinal, porous, or tubulat jate of ace

structure, cannot take place without first erushing the medallary rats, bence the effect of the shrinking finds relici by spblitiong in another direction, n:medy in radial lines from the centre, parallel with the onedullary riys, thereby enalling the tree to maint:in its full diameter, as shown in Fig. 3.
If the entire tubular tibre composing the tree were to contract butiay, then the medullary rays wouk of nenecessity have to be crushed in the redial direction to enable it to take place. and the timber would thus be as much injured in propurtion as would le the case in crushing the wood in the lompitudinal dirertion. If such an oak or beech tree is cut into four quasters, by passing the saw twice through the centre at right angles, before the contracting ind splittide: hane commeneed, the lines as ,
 right angles to earh other, or, in the technical language of the workshop, ther would be squ:are, but, after lecing

surced in it dry place, sats for a year, it would then be secen that a great change had taken place both in the form and in sume of the dimenswns, the lines $a \operatorname{a}, \mathrm{c} \phi_{\text {, }}$ "und ie the same $\mathrm{len}_{\mathrm{i}}$ th as lefore but at would have cuntiated form atob very consticrably, and the tuo
 ly the purtion here shoun an blach in fug. 3. a he uicaluliar) (ays ouc thas brought cioser ibs the collopsing of the retical fibre.
But suppwing that sid parallel sav cuts are passed
Bul suipuing that aia paralial zir culs are passad
through the tree so as to form it mito seven planks, as shown in Fig. 4 , let us see what wombl be the behaviour of the seseral planks. Take the cente plank tirst. After due seasoning amd comeracting, it would then be fomed that the middle of the board would still retain the original thickness, from the resistance of the medallaty tats, while it would be sradually redured in thickness toward the edges for wath of support, and the entire

breatth of the plank sould be the same as it was at first, for the foregoing reasons, and as shown in Fig. 5 . Then, taking the planks at eath side of the center, by the same law their change and behaviour would be guite different ; they woald still retain their original thickness at the ceatre, but would be a little reduced on each edge throughout, but the side next to the heart of the tree would be the reverse, or hollow, and the plank would be considerably umrower throughom its entire lengh, more especially on the face of the hollow side, all due to the want of support. Selecting the next wo planks, they would be found to have lost none of their thickness it the centre, and very litte of their thickness at the edges, but very much of their breadth as planks, and would be

curved round on the heart side, and made hollow on the autside.
Supposing some of these planks to be cut יp into squares when in the green state, the shape that these stuares would assume, after a period of seasoning, would entirely depend on the part of the tree to which they belon;ed : the greatest alteration would be parallel with the medullary rays. Thus if the square was near the outside the effect would be as shown in Fig. G, namely, to contr.st in the direction from at to b, and after a ge a or two is woild te thas, as seen in Fig. 7 , the distance betucen c and a being nearly the same as they were before, lout the other two are brought by the amount of their contraction closer together. By understanding this natural law, it is comparatively casy to know the future behaviour of a board or plank hy carefully cx-

amman: the end of the wood, in order to ascertan the part of the . rg from which at has been cut, as the :ngre of the ring grows and the medullary rays will show ats in Fis. S .

A plank that has it will evidently show to have been cut from the outside, and for many ycars it will gradually shorink all to the breadth. While the next plank shown in Fig. 9, clearly pounts to the centre or heart of the tree, where it will not shank to the breadth, but to the varyong thickness with the full dimensions in the madde, but tapering on the edges, and the planks on the nght and left will give a mean, but with the centre sides curved round, and the outsude still more hollow. These remarks apply more especially to the stronger exogenous woons, such as irech, oak, and the stronger firs. The sofier woods, such as ycllow pine, are governed by the same law, but in virtue of their softness another law comes into force, which in some degree affects their behaviour, as the contracting power of the tubular wood has sufficient strengih to crush the softer metullary mas to some extent, and hence the primary law is so far modified. But even with the softer woods, such as are commonly used in the construction of houses, if the taw is carcfully vbeyed, the greater part of the shrmaking, which we are all too famliar with, would be obviated,
is the following athecdote will serve to show: It wats esolved to bund four houses, atl of the best class, but one of the four to be pre-eminently good, ats the future residente of the propictor. The timber was purchised for the entire lot, and the best portions were selected for house No. t, but by one who did not know the law, and to make certain of success this porison of the wood hat an catrat twelve months' statsoning after it was cut up. The remainder of the wool was then hamded ever to a contractor for the other three hooses, who hiod :th intelligent young foremin, whoknew the structure of wood as well as how to oby the law, and who, t?.ere-

Hys. H

fote, hat the wood for the three honses cut up in accordance therewith. The fourth house was buit the follow. ins jear by another man; but long before ten years had passed to the great surprise and annoyance of the proprictor it was tound that his eatrat good house had gone in the usuat manner, while the other three houses were without a shrinkage from top to bottom.
A similat want of correct knowledere of the natural figure atud properties of the structure of wood, such as the oatk, is constantly shown by the imperfect painting to resemble that wood, as exhibited on doors and shutters of many houses. If we can afford to have genuine wainscol doors, as in France and other countries, but

Flı: :

yet desire to have an imitation, it would surely be worth the trouble to have a block cut from the quarter of an oak trec, and to lave each of its six sides planed and polished, in order to make phan their several features. The house painter would then see who nature really is, and: :hus save us from the ridicule of other nations, when we mix up "silver grains" and all the other natural features upon one side of a board or panel. This is a subject that should interest all wood-workers and builders and a great deal of attention should be given to the structure of the various woods. It is alinost as necessarv foridndoodimacker 10 understand the anatomy of his tree, so to speak, as a surgeon to understand the anatomy before he commences to operate. The importance of the subject is therefore obvious.

A SCALE OF HARDNESS FOR METALS.

The atuthor describes a scale of hardness in use in the laboratory of the Technical High School at Praguc, composed of the following eighteen metallic substances, armaged in ascending order, from the softest to the hardest:

1. l'ure sofit lead.
2. Pure tin.
3. Pure hard lead.
4. Pure annealed copper
5. Cast fine copucer.
6. Soft bearing copper (copper. $S_{5} ;$ un, 10 ; zinc, 5).
7. Cast iron anncaled.
S. Fibrous wrought iron.
8. Finc-grained light-grey cast iron.

1a. Surngthened cast iro: (melted whth to per cent. of wrought turnings).
11. Soft ingot iron, with 15.00 per cent. carbon (will not harden).
12. Sted, with 0.56 per cent. carbon (not hardened).
13. Steel, with 0.96 per cemt. cation (not hardened).
14. Crucible cast-stecl, hardened and tempered bluc.
15. Crucible stecl, hardened and tempered, violet to orange yellow:
6. Crucible steel, hardened and tempered straw yellow.
17. Hard-beanng metal, copper, is; zunc, 17.
18. Crucible steel, glass hard.

The test is made by drawing a cylindncal piece whth a conical point along a polished surface of the metal to be tested. In the case described, that of a bronze used for the crosshead guidic of a locomotive, the point, when with j kilograms, was drawn six times through a distance of j centimetres. Under these conditions the points of the number below 5 in the scale were blunted without marking the surface; with Nos. 5 and 6 neither point nor surface was abraded; but with No. 7, while being slightly worn on the point, began to scratch the surface. The hardness was, thercfore, that of pure copper or soft bronze. The absolute tensils tesistance was found to be $2,0 j 1.7$ kilograms per square centimetre, while that of copper is $1, y=0$ kilograms per square centimetre, and hat of the bronze, Nio. 7, is 2,300 per square centumetre, thus showing an mimate relation between the strength and hardness of sumilatr inctallic compounds,

