NOTES EXPLANATIONS

For the Calendar of 1880.

On the Left Hand Page, for each month, will be found the day of the Month and Week; the Tine of Sun's Rising and Setting (local mean time to nearest minute) ; the Equation of Time (correction to be applied to time as found by Sun-dial or astronomical observation) is given for the instant of Greenwich Apparent Noon.

The Sun's Declination is given for Greenwich Mean Noon. If declination at Apparent Noon is required-as for Meridional observations, it may be found by multiplying the hourly variation by the Equation of Time reduced to the decimal of an hour, and applying the result to the Declination at Mean Noon-being careful to subtract when the declination is decreasing, and the Sun slow of Clock; or when the declination Is increasing and the Sun fast,--and to add when the declination is decreasing and the Sun fast; or decination increasing with the Sun slow.

EXAMPLE.

To find Sun's Declination at Apparent Noon, November 1st 1880.

Nov. 1. Mean Noon, hotrly variation of Dacl'n $=47.75$
60) 19.24 Equation of Time $16 \mathrm{~m} .19 .24=.2720$
$6 0 \longdiv { 1 6 . 3 2 0 6 }$
.2720

Declination at Apparent Noon $\begin{array}{lll}14 & 39 & 10.1 \\ & 12.988\end{array}$

In place of the days length, (which may always be found by adding together the hours before and afternoon,) the Sun's Semi-diameter is given to the nearest tenth of a second for every day throughont the year.

On the right hand page are given the Lunar Phenomena generally, viz., the Moon's changes, bearing at time of change, Rising, Southing and Setting, Perigee and Apogee. Declination and time of high water at Charlottetown, all reduced to the nearest minute, Charlottetown Mean Time.

Bruce \& McKenzie's, Full's Building, 72 Queen St., Ch'town.

