

If the front tangent bas not been located, in beginning the circular enrvo proceod as follows. Set up transit at offset distance inside the tungent, of at the P. C. ; breksight to a point similarly offiset; then run the curve as usual. At the P. T. the operation will have to be reversed. If, on the contrary, the front tangent has been fixed, T' and not T, must be moasured from the vertex to locate a point from which to lay off F from the P . C., $\mathrm{T}^{\mathrm{t}}=$ $(R+F) \tan \cdot \frac{\Delta}{2}$, and is found, from fig. 2 , as follown:

$$
\begin{aligned}
\mathrm{T} & =\mathrm{HB}+\mathrm{HO} \\
& =\mathrm{R} \tan \frac{\Delta}{2}+\mathrm{F} \tan \frac{\Delta}{2} \\
& =(\mathrm{R}+\mathrm{F}) \tan \frac{\Delta}{2} \\
\text { or } & =\mathrm{T}+\mathrm{F} \tan \frac{\Delta}{2}
\end{aligned}
$$

Here we have \triangle, D and F given.
As the figure indicates, the circular curvo is moved parallel to itself to a distance F, from its former position, in order to make room for the transition curve. The new curve then has an external distance, with reference to the oid tangent, equal to or slightly less than the old, the offset being small. Thus $\mathrm{E}^{\prime} \overline{\mathrm{E}} \mathrm{E}-\frac{\mathrm{F}}{\cos \frac{\Lambda}{2}}$. From Searles' Table VI we may take the E for a 1° curve; divide this value by E^{1} for D^{1}, and then change the latter value enough to avoid fractional minutes, before finding the length of the curve and T.

In case the new curve should fit the roadbed better by extending as far outside the old curve at centre as inside at the P. C. we would have :

$$
\mathrm{E}^{1}=\mathrm{F}-\frac{\mathrm{F}}{\cos \frac{\lambda}{2}}-\frac{\mathrm{F}}{2}
$$

Another important case ariser where a transition curve is to be put in on old track, the now track being same length ne the old. This is to prevent cutting the rails. In tig. 3 let

$$
\begin{aligned}
\mathrm{BC} & =\mathrm{T}=\mathrm{R} \tan \frac{\Delta}{2} \\
\text { and } \mathrm{BK} & =\mathrm{T}^{\prime}=\left(\mathrm{R}^{1}+\mathrm{F}\right) \tan \frac{\Delta}{2} . \\
\text { The arc } \mathrm{AC} & =\text { length of old treck } \\
& =\mathrm{R}_{\Delta}^{\circ} \text { arc } 1^{\circ} \\
\text { and arc } \mathrm{GL} & =\mathrm{R}^{1} \triangle^{\circ} \text { are } 1^{\circ} .
\end{aligned}
$$

Now, the length of new traek from \mathbf{A} to \mathbf{C}, the transition curve being put in, is equal to $\left(\begin{array}{rl}\mathrm{L}\end{array}+2(\mathrm{BC}-\mathrm{BK})+2\left(e+e^{\mathrm{l}}\right)\right.$, therefore by substitution wo get $R \Delta^{\circ}$ arc $1^{\circ}=R^{\prime} \triangle^{\circ}$ arc $1^{\circ}+2 R \tan \frac{\Delta^{\circ}}{2}$ $-2\left(\mathrm{R}^{1}+\mathrm{F}\right) \tan \frac{\Delta}{2}+2\left(e+e^{1}\right)$, therefore

$$
R^{\prime}=\frac{R \Delta^{\circ} \operatorname{arc} 1^{\circ}-2(R-F) \tan \Delta_{2}-2\left(e+e^{l}\right)}{\Delta^{\circ} \operatorname{arc} 1^{\circ}-2 \tan \Delta}
$$

The following will show the use of the above equation. Find the data for a transition curve where the track is already laid on a 6° curve, 800 ft . long.

Taking 25 ft . of transition enrve per degreo wo have $c=2 \times 150$ $=300$. Then from the tables we get $F=3.92 \mathrm{ft} . ; \quad\left(e+e^{1}\right)=$

