If $\overline{p} > p/e$, then $\partial E(p^*)/\partial \alpha^2 > 0$. In this case, an increase in α^2 produces a decline in $g(\cdot)$ as maintained in part b.

and (4) and combining expressions pields (5) (2315

Thus, $g(\cdot)$ is increasing in $\left[\frac{2\pi}{2}\right]_{\mathcal{T}} = \left[\frac{2}{2}\right] = \frac{2\pi}{2} = \frac{2\pi}{2}$

where the second bracketed term is mainting up ally range with f(f) = g(p) is also $f(f) = 1/2\gamma^2 > 0$ which implies that $\partial g(\cdot)/\partial E(p^*) > 0$. Therefore, an increase in γ^2 causes an increase in $g(\cdot)$ if $\overline{p} < p/e$ as shown in part a (2)

If, on the other hand, $\vec{p} \sim p/\epsilon$ then $\vec{\rho} T (\vec{p} \gamma^2 < 0$. In this case, $\partial_{\theta} (\gamma/\partial E (p \gamma) < 0$. Therefore, an increase in γ^2 causes a decrease time $g(\gamma)$ indicates $\beta \rho / \rho \approx \pi$ maintained in part b. proband T

Proof of Proposition 1. Uncortaighioid (P) ches (C) (geineshear (I)(Ch.) mitter Segret do (935))

Because $1/a^2 > 0$, $\partial E(p^2)/\partial a^2 < 0$ if $p_{opt}(c, an increase in a^2$ then lowers $E(p^2)$, which by Proposition 1, leads to a decline in p(c) as maintained in part a.