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Proceeding now to the energy-work relations, we ob
tain the general energy equation :
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rTT>HE physical laws of most value in the study of the 
A phenomenon of impact are the laws of conservation 

of momentum and conservation of energy. By means 
of the principles expressed by these laws the velocities of 
two colliding bodies after impact may be determined for 

conditions, such as elastic, semi-elastic, and dead 
impact, and the energy lost may be computed when the 
physical properties of the material are known. Stresses 
due to suddenly applied loads may also be obtained, with 
the aid of certain assumptions, when the elastic limit of 
the material has not been exceeded. In case the elastic 
limit of the material has been exceeded theory casts little 
light upon the actual stresses or even approximate stresses 
such as the modulus of rupture or the stress at failure, 
which is of so much importance in engineering construc
tion.' How do the stresses at failure of a wooden beam, 
for example, compare with the corresponding stresses for 
a beam loaded statically to rupture? Will a material 
absorb more or less work to the point of failure when 
suddenly loaded than it does for slow loading? Is the 
modulus of elasticity the same for the two methods of 
loading? Will a beam deflect farther at rupture in impact 
than it does in static bending? While the latter question 
may be readily answered by making a few simple tests, 
the matter of stresses is not so readily put aside and re
quires for its solution both the application of the laws of 
impact and experimental data of a somewhat unique 
nature. It was primarily the determination of the stresses 
actually set up in impact that prompted the investigations 
presented herewith.

Before proceeding to the tests themselves it will be 
necessary to analyze the phenomena of impact and to 
formulate the theory involved. In the study of the theory 
the conditions under which the tests were made will be 
kept in mind constantly and no assumptions will be made 
that cannot be amply justified by the results of the test.

For the purpose of this study we will imagine the usual 
wooden beam supported at the ends and struck at the 
centre by a falling weight or tup whose mass is at least 
ten times that of the beam. .The beam is rectangular in 
section, and the nose or surface of contact of the tup is 
rounded so that undue crushing of the fibres on top of the 
beam will be avoided. The tup is allowed to fall from a 
height sufficiently great to break the beam with a single 
blow. At the instant of contact the pressure between the 
tup and the beam is zero. Then, as the tup proceeds in its 
descent, dropping through a distance Ag, there results, 
first, a slight depression or indentation in the beam due 
to the inertia of the particles of the beam in the path of 
the motion ; second, a displacement of the centre of gravity 
of the section of the beam under the tup equal to Ay, so 
that the difference Ag-Ay represents the depth of the in- 
entation ; and, third, a wave is sent out to each side with 
speed equal to that of the velocity of stress propagations 

in timber. Inasmuch as Ay is small, the upward pressure 
of the beam due to flexure is as yet quite negligible, and 
the actual pressure between the beam and the tup may be 
considered as due entirely to the inertia of the particles 
in the vicinity of the centre. As the descent proceeds 
with AS still very small, the difference Ag-Ay becomes

.. 11

constant, and soon the centre of gravity of the section 
under the tup has the same velocity as the tup itself. This 
does not imply, however, that the sections to either side 
of the centre have attained velocities proportional to their 
proximity to the centre or to the deflections associated 
with a deflection Ay at the centre, due to static loading. 
The latter state is merely the limiting or equilibrium 
dition that the beam assumes as the deflection proceeds. 
Since the velocity of stress propagation for timber is about 
13,000 feet per second, and the total time for the deflection 
has a minimum value of 0.02 second for the tests made 
on 50-inch beams, it may be assumed that this condition 
of equilibrium has been reached a relatively long time 
before the maximum deflection has been attained. When 
this condition has been arrived at the beam has an elastic 
curve very nearly the same as the elastic curve in static 
bending, and the presshre between the beam and the tup 
is due solely to flexure. In the meantime, since the bend
ing has increased, the actual pressure between the two 
has also materially increased, with a corresponding in
crease in the depression.

Having followed the changes that take place in the 
beam up to the instant that its inertia has been entirely 
overcome, we are now in a position to determine the ex
ternal moments that set up the stresses producing failure.

Considering the forces acting on the tup, there is, first, 
the force of gravity giving it a downward acceleration 
g, and, second, an upward force p, the pressure of the 
beam imparting acceleration in the direction opposite to 
motion and equal to a. If s stands for the vertical dis-

d2splacement of the tup then -jp- represents the rate at which

the tup is changing its velocity ; that is, the acceleration 
of the tup, which, it has just been Seen, is the resultant 
of a upward and g downward. Since the motion of the 
tup relative to the centre of the beam is extremely small,

d*s
being due only to a change in the indentation,—^ is also

the acceleration of the centre beam. Besides these major 
forces, there remain, of course, friction of the tup in its 
guides and air resistance. Tests made to find the change 
in velocity due to friction showed that the velocity was , 
not decreased more than 2 per cent., indicating that 
friction is quite small when compared to the force of 
gravity and absolutely negligible when compared with 
the upward force of the beam.

Put as an equation, these conditions are expressed by 
the relation

con-

ds2

w = a~g

^Abstract of paper in Journal of the Franklin Institute.
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