$$
23
$$

Then, from our general discussion, we readily deduce the following equations:

$$
\begin{align*}
& \begin{array}{rl}
x=\frac{1}{1+\frac{T}{C e}} & =\sqrt{\frac{1}{5} e p\left(\frac{t}{5} e p+2\right)-\frac{j e p}{}} \\
T & e(1-x) \\
C & x
\end{array} \tag{A}\\
& \left.p=8 \frac{T}{C} \sum^{5} 1+\begin{array}{c}
T \\
C e
\end{array}\right) \tag{C}\\
& M_{0}=\frac{z}{x} C l^{2}(1-\xi x)=p T b l^{2}\left(1-\frac{3}{2}\right) \tag{D}\\
& \text { Case I. }
\end{align*}
$$

To design a beam of any assumed quality of steel and concrete to carry a given load.

Here we have given T, C, E_{s} and E_{c} To find p, b, d, for any definite M_{o}
Example:-
... Let $C=700 \mathrm{lbs}$ per sq. in. $T=14,000 \mathrm{lbs}$. per sq. in.
ETP $V_{\mathrm{s}}=30,000,00 \% E_{\mathrm{c}}=3,000,000$.
then ${ }_{C}{ }^{T}=20$ and $e=10$.

$$
\begin{aligned}
& \text { From }(\mathrm{A}), x=\begin{array}{c}
1 \\
1+\begin{array}{c}
T \\
T
\end{array}=\frac{1}{1+}{ }_{10}^{20}=\begin{array}{l}
1 \\
3
\end{array}, ~
\end{array} \\
& \text { From }(\mathrm{C}), \mu=78 \times 20 \times\left(1+2_{10}^{20}\right)=0.010_{4} \text { or } 1.04 \% \\
& M_{0}=\frac{5}{8} 700 \times \frac{1}{3}\left(1-? \times \frac{1}{3}\right)=1126.7 \mathrm{hd}^{2}
\end{aligned}
$$

which gives $b_{n}{ }^{z}$ for any value of M_{0} that may be given.
Case II.
To determine the stresses in a given beam under any given loading.

Here we have given b, d, p, also E and F_{c}
To determine T and C for any value of M_{0}
Example:-

$$
\text { Let } b=6^{\prime \prime}, d=10^{\prime \prime}, p=0.010_{4}
$$

$F_{\mathrm{s}}=30,000,000 \quad E_{\mathrm{c}}=3,000000$, so that $e=10$
Then from (A):

$$
x=\sqrt{\frac{4}{5} 0.104\left(\frac{4}{8} 0104+2\right)}-\frac{4}{5} 0.104=\frac{1}{3}
$$

and from (B):

$$
\frac{T}{C}=10^{1-\frac{1}{3}} A^{\prime}=20
$$

