are estimates for cost of construction in New Orleans, where steel poles cost more and wooden poles less than in northern cities. For one mile of span wire construction 104 steel poles, at $\$ 15$ each. would cost $\$ 1,500$, and assuming their life to be 30 years, the interest on the investment for 30 years at 5% per annum would be $\$ 2,340$, or a total first cost and interest of $\$ 3.900$ The setting of steel poles necessitates the use of concrete. I estimate the cost of this and the labor of placing it at $\$+50$ per pole, or $\$ 408$ per mile, which, with interest for 30 years at 5 per cent per annum, would be $\$ 1,170$, or a total for interest and first cost of material and labor of $\$ 5.070$ for the steel poles.

Assuming the life of heart pine poles to be 12 years instead of 20 years). I will make a comparison on that basis. Such pules for one mile of span wire construction at 104 poles to the mile at $\$+.50$ each, would cost $\$ 4{ }^{18} 8$, labor and material for erecting. at $\$ 250$ per pole, $\$ 26 n$. or a total first cost of $\$; 28$. to this must be added interest for 30 years at 5 per cent per annum, $\$ 1,092$, making the first investment at the end of 30 years $\$ 1.82 v$. At the expiration of 12 years the construction must be renewed at a cost $0 \$ \$ 728$, and to this must be added interest for 18 , ears at 5 per cent. per annum. $\$ 055$ 20. making the second investment at the end of 30 years cust $\$ 1,3^{8} 320$. It the expiration of af jears the cunstruction will be renewed for the third time at a cost of $\$; 2 \mathrm{~S}$, and to this will be added the interest for six years at 5 per cent. per aunum, $\$ 213 . q u$, making the third investment at the end of 30 years cust $\$ y+6+0$, a grand total for wood pole construction of $\$ 4.1+y .60$. The difference between the total costs of steel and wood pole construction for a period of 30 years would be $\$ 920 . ;$ o per mile, which would be more than a liberal allowance for changing span wires and other work necessary in renewing the wood poles, but assuming it would take this amount we would stand even at the end of 30 years and stall have six years more life in the wood pole construction.

If steel span poles are used I would recommend for the average span of so feet a pole weighing about joolbs., made in two parts. The lower section to be constructed of G-inch extra heavy standard steel pipe. and the upper section of 5-1ach, swaged at the joint for a distance of 18 inches. Such a pole should be 28 feet long. 18 feet fur the luwer and so feet fur the upper section, and provided with a cast-iron and wool pule tup for the attachment of the span wires There should be a woot filling to fit the buttom of the lower half to prevent it from sinhing, and the prole shuuld be set 6 feet in the ground with a rake of so inches from the perpendicular to allow for being straightened when under strain. The average size of hole to be dug would be 20 inches in diameter, with a depth of a lintle over 6 feet, requiring (after the pule is inserted) a mixture of about $!2$ cubic yard of 1,2 and 4 Purthand cement concrete. The cement should te set at least three days luefure allachir.f the span wires Whenever it is practicable. allow pules to bear agannst the curbing, as it affords an efficient stay for the pole. Otherwise a good sized rock having a bearing surface of abwut i syuare foot would assist ver, much, and keep the pressure from cracking the cement

If wood poles are used where it is necessary to provide neat and substantial construction, 1 wuuld recommend for the averagespan of 40 feet a long leaf yellus pine pole dressed and chamfered. 30 feet long, sawed square, is $\times 14$ inches at the base, and 7×7 inches at the point, free frum sap. rut ur hnuts, and curners evenly chamfered. 1% inches, beginning at a point $1+$ feet from the base, and termnating in an octagunal form and ruuled eventy fur a space of three inches In setting wood pules where cuncr, te is nut used fand I do not cunsider it necessary) a great deal depends upon the soll encountered In a soll of medium clay, and average condition, poles should be set C feet in the ground with a rake of 12 inches from the perpendicular. and the hole should be dug to a vertical depth of 6 feet (or more if necessary to allow the pule to stand a given height above the trach, and shuuld be abuut 2 feet square at the top and not less than 18 inches at the bottom. Where it is practicable, allow pules to bear against the curbing (or paving). Place a substantial bearing at the heel to prevent the pule from pressing through the earth, for this purpuse a small yuanity of coarse broken stone or brickbats will answer every purfuse. Where this is not easily obtainable, and the earth is soft, a piece of plank 12 inches wide by 3 inches thick, 4 feet long, sharpened and driven in the earth to a depth of about 2 fect at the back and base of the pole, will give good results.

Whenever it is necessary to crect poles in the absence of substantial material at the surface, such as pating or curbing, I would recommend that the base of the pule ve well rammed wath broken reck for a distance of 18 inches, taking pains that the greater quantity is placed at the back where the pressure is greatest and leaving a small quantity in front where no prossure takes place.

The space to within 20 inches of the top may be filled with earth taken from the hole and well rammed. To prevent the pole from yielding at the surface a breast plank of oak (or cypress) timber 3×12 inches $\times 6$ feet should be placed and spiked in front and at tight angles to the pole about 8 inches under the surface of the ground. About 20 inches from the top of the hole and in front of the breast plank should be filled and well rammed with the same material that is used at the base of the pole. The necessary quantity of broken rock required would be about $1-5$ cubic yard per pole.

Poles of wood or steel which may be used for holding strains at curves should necessarily be heavier than those used for straight line construction, and should aloo be set at greater depth in the ground A steel pole for cutreconstruction should be 29 feet long. made of 6 -inch and 7 -inch extra heavs pipe, the larger section to be 19 feet long and the smaller section to be to feet long and made to weigh t,050 lbs Such poles should be set 7 feet in the ground. and raked to inches frum the perpendiculas in a direction radiating from central point of curve where strain is required. The filling wculd be the same as specited for straight line aron pole construc. tion. Wood pules for curve cunstruction would be made similar to those specified heretofore for straight line construction, excepting dimensions of such pules should be 31 feet long by $14 \times 1+$ inches at the bilt, 9 by 9 inches at the top. Such poles should be set 7 feet in the ground and raked 12 inches from the perpendicular in a direction radiating from the centre of curvature where stran is required The hole should then be entirely filled with about 7-1Q cubic yard of broken rock well rammed.

The holes for eye bolts should be bored in wood poles before their erection and the bolt should incline slightly downward towards the eye to prevent the water from following in and rotung the top of the pole. The correct location for eyebolt holes would be determined by the height at which the trolley wire is to be placed: $\mathbf{2 2}$ feet from the base of the pole would be correct, assum. ing that we allow 2 feet for drop in the earbod, and ear, and also dip in the span wire would make the height of trolley wire about 20 feet. To facilitate the setting of poles to a uniform height it is a good plan to place grade stakes near the location selected for poles. indicating a given height relative to the grade of the track.

Centre pole construction is required in many locations, but 1 consider span construction better owing to its flexiblity and for being less unsightly. There are now on the market appliances for making bracket suspensions flexible, which are an improvement over the old type of rigid construction. One of the most practical which I am familiar with is an attachment to receive a short span of fexible wire and the urdinary straight line hangers.
l'oles used for centre and bracket construction should be made according to the same specifications as those used for span con. struction, excepting that an ornamental pole top would be required for the steel pole instead of an insulated one. For the bracket arm a $1: / 2$ inch pipe of the required length attached to a malleable iron collar made in halves and encircling the pole, and supported by truss rods leading from the end and centre of the arm to near the top. makes an excellent and neat construction.

Wherever guard wires are required it will be necessary to leave about two feet additional space on the top of the pole above where the trolley span wires are attached, for the autachment of the guard wire span It wnuld hardly be practical to provide an insulated pole top for both span uires, so the trolley span wuuld be supported by means of a wrought iron clamp collar encircling the pole at the proper point and provided with suitable insulating fastenings 1 do not especially approve of this method of cunstruction (as 1 do not favor guard wires), but 1 would recommend it where it is compulsory to erect guard wires

All poles should be painted with one coat before their erection. as it affords better opportunities to carefully apply the priming coat and at lew expense than after the poles are set. A paint of dark green composed of graphite mixture I find to wear well, and although it costs more than some other paints, it has better lasting qualities (especially in iron work) A second coat of this parnt after the poles are erected will cover marred places made necessary in setting. and will look well and last for at least two years.

Sfinn Wires.-Span wires should be of ficxible steel, $5 \cdot 16$ in. in
FOR SALE (good as new)
20,000 root 3 -in. Hollor Tubos; 20,000 root 1-In. Boilor Tubes,
 Raliad Pullogi, Hangort,
bitt Mitatal, Soldor, ote.

FRANKEL BRO8.,
Metals, Scrap lrox Cottox Waste, eto. ilg-i30 georoe 3treet, torohto

