

UNG. MAINENTRANCE

ig these lives extremely unfor a space in his jail before ose once more to prey upon

RENCH HEROINE

of French novels has always ose of any other nation. She e always. Either she belongs ks of life, where the trammels ty may be carelessly ignored, gether beyond the pale of law w of the latest women novelring to alter these conditions. en to invest the Frenchwoman sie or middle classes with sufto render her attractive to the ader. To some extent the exn group of English writers has nd recent French heroines are nstances similar to those femhave been presented to the as embodying the aspirations middle-class heroine of today.

Bride and Her Dot ne women of the bourgeoisie njoyed a certain liberty and independent position, because rided by their parents. Even do not leave this dot out of ns. In the average household om sources that English peocely have worked to the same use types from real life is peride issue to the novelist's creant woman in the South of de a success of growing mushequeathed her mushroom tuninddaughters. The girls were ne grandmother died, and the ly set aside the revenue from They educated their girls the way of earning a good inrs, and the girls placidly look me when, if still earning their o, they will be in a position to

ittle town in the sunny South, stretches over a shop door out Inderneath is written snails). Within the shop there seen but at certain seasons a g elderly peasant. Her daughell dowered that they married oisie, and now have good, comwith large banking accounts. ears this woman was left a vo children and a very modest went into the vineyards and ne snails, considered a delicacy

sold them to such good account soon established herself in the the gilded spail as a sign. Her and grew. Women and chiln miles round bringing baskets which she bought for a trifle profit in her shop. Gradually e neighboring towns. Still the d prosperous, until today the snails have increasel manyfold. women of such practical spirit, for turning small things to acnovelists must perforce deal to the realities of middle-class eroines. The French girl of totastes to those of the English. n a little flat, is a trifle more ts suggestions than in London, g girl, it is hedged about with The French girl who goes work appears to find a conhere more easily, and it is, to

y society, flattered, and overthe state schools offer good opomen, but, as judged from the ters of today, the life is more than the life of the English This, as suggested, might lack of imagination in the wos. Women novelists show how a school mistress the French imble origin may raise herself hard work and ambition to a ition. In France, as in Engcholarships that give sufficient students to improve their simple and obscure villages the state examinations. They

to Paris to study at the Sor-

less difficult for the writer,

income, to form a salon and to

centre of an admiring crowd,

L-MAKERS AND JELLY F

(By Sir Ray Lankester, K.C.B., F.R.S.) A very beauiful kind of sea-anemone (comtion" are always going on in the waters of the mon at Felixstowe) is the Daisy, or Sagartia

earth and sea.

troglodytea, which has a very long body at-

tached to a rock or stone far below the sandy

floor of the pool, on the level of which it ex-

pands its thin, long, raylike tentacles, colored

dark brown and white, and sometimes orange-

vellow. As soon as you touch it it disappears

into the sand, and is very difficult to dig out.

The most beautifully colored of all sea-anem-

ones are the little Corynactids (half an inch.

across), which you may find dotted about like

jewels, each composed of emerald, ruby, topaz, and creamy pink and lilac agate, on the under

surface of slabs of rock at very low tide in the

Channel Islands. One of the most puzzling

facts in natural history is that these lovely little things live in the dark. No eye, even

of fish or crab, has ever seen what you see

when you turn over that stone. It is a simple

demonstration of the truth of the poet Gray's

statement that many a gem of purest ray se-

rene is concealed in the dark unfathomed

depths of ocean! A splendid anemone is the

Weymouth Dianthus, so named because it is

dredged up in Weymouth Bay. It is often

six inches long, and has its very numerous,

small tentacles arranged in lobes, or tufts,

around the mouth. It is either of a uniform

bright salmon-yellow color or pure white.

When kept in an aquarium it fixes itself by

its disc on the glass wall, and often, as it

slowly moves, allows pieces of the disc to be-

come torn off and remain sticking to the glass.

These detached pieces develop tentacles and a

mouth, and grow to be small Weymouth

If the disc were spread out and gave rise

to little anemones without tearing-so that

we should get a composite or compound

animal, made up of many anemones, all con-

nected at the base. This actually happens in

a whole group of polyps resembling the sea-

anemones. They grow into "stocks," "tree-

like," or "encrusting" masses, consisting of

hundreds and even thousands of individuals,

each with its mouth and tentacles, but with

their inner cavities and bases united. These are the "coral polyps," or "coral-insects" of old writers, of so many varied kinds. One

further feature of great importance in a

'coral" is the production of a hard deposit of

calcite or limestone, which is thrown down by

the surface of the adhesive disc, and is also

formed in deep, radiating "pockets," pushed in to the soft animal from the disc. The hard

deposit of calcite is continuous throughout the

'stock," or "tree," and when the soft sea

anemone-like animals die, the hard, white mat-

ter is left, and is called "coral." Very common-

ly this white coral shows star-like cups on its

surface, which correspond to the lower ends or

discs of the soft sea anemone-like creatures

which deposited the hard coral. In a less

common group (represented commonly on our

coast by the so-called "dead men's fingers"

found growing on the over-hanging edges of

low-tide rocks) the hard coral material does

not form cups for the minute sea-anemones

which secrete it, but takes the form of a sup-

porting central or axial rod (sea-pens), or branched tree (sea-bushes), upon which the

fleshy mass of polyps are tighty set. This is

the case with the precious red and pink coral

of the Mediterranean (which is now being

'undersold" actually in the Mediterranean

markets by a similar red coral from Japan,

usually offered as the genuine article, which it

On the British coast you do not, as a rule,

find coral-forming polyps. A small kind, con-

sisting of two or three yellow and orange-red

anemone-polyps united and producing a small

group of hard calcite cups (Caryophyllia and

Balanophyslia) is not uncommon at Plymouth

at a few fathoms depth. But you have to go

to the Norwegian fiords or else far out to sea

where you have 300 fathoms of sea water in

order to get really luxuriant white corals—the

beautiful Lophohelia which I used to dredge in

the North Fiord near Staranger, as branching,

shrub-like masses of a foot cube in area, each

white marble cup standing out from the stem,

an inch long and two-thirds of an inch across,

and the stems giving support to a whole host

But these, beautiful as they are, are

nothing, so far as mass and dominating vigor

of growth are concerned, in comparison with

the reef-building corals of the warm seas of

the tropics. There these lime-secreting con-

glomerated sea anemones separate annually

hundreds of tons of solid calcite per square

mile of sea bottom from the sea water, and

build up reefs, islands, and huge cliffs of coral

rock. They get the calcite—as do calcareous

seaweeds and shell-making clams, oysters,

whelks, and microscopic chalk-makers-from

the sea—the water of the sea which always has

it ready in solution for their use. And the sea

gets it from the rivers and streams which wear

away and dissolve the old limestone deposits

now raised into mountain chains, as well as by

itself dissolving again in due course what liv-

ing creatures have so carefully separated from

bonic acid gas dissolved in it dissolves lime-

stone and chalk-it becomes what we call

"hard." Neutralize the dissolved carbonic acid

(as is done in the well known Clark's process

Sea water or fresh water with a little car-

worms and starfish.

is not!).

they remained in continuity with the parent-

The name "jelly-fish" has reference to the colorless, transparent, soft, and jelly-like substance of the bodies of the animals to which it is applied. There are a number of marine animals, besides the common jelly-fish, belonging

solved calcite as a fine sediment. These alter- ing to its transparency-it would encounter nating processes of solution and "precipita- unsuspecting, jerkily-moving water-fleas, unwarned by any shadow east by the impending glass-like monster of half an inch in breadth slowly approaching from above; and as soon as they touched it they were paralyzed (by microscopic poison-threads like those of the sea anemones), and were grasped and swallowed by the mobile transparent probosis (like that of an elephant, though certainly smaller,

A Fine View of Hill and Road Close to Loch Lomond, Just Now the Mecca of So Many · Eager Holiday-Seekers

to different classes, which are glass-like in transparency and colorless-so as to be nearly or quite invisible in clear water, and some, too, occur in fresh waters (larvae of gnats, notably Corethra). The transparency of these animals serves them in two different ways-some are enabled by it to escape from predatory en-

emies; others, on the contrary, are enabled to approach their own prey without being observed. The latter was obviously the case with the little fresh-water jelly-fish which appeared in great abundance some years ago in the lily-tank in Regent's Park. The water was full of small water-fleas (minute crustacea) and

the little jelly-fish, if removed from the tank and placed in a tall glass jar filled from the tank water, spent its whole time in swimming upwards to the surface by the alternate contraction and expansion of its disc-like bodyand then dropping gently through the whole length of the jar to the bottom, when it would again mount. On the downward journey-owand having the mouth opening at its end, instead of a nostril), which hangs from the centre of the disc-like jelly-fish.

Very young fishes are often colorless and glass-like. Young eels of different kinds exist as flat, colorless, glass-like creatures (called Leptocephalus) of three or more inches in length, according to species. Absolutely only the two black colored the two black-colored eyes are visible as the creature swims in a glass of water. It is a puzzling fact that, so far as is known, these very transparent, colorless young eels only come by rare accident to the surface-and exist in enormous numbers at a depth of 500 fathoms, where they were hatched; their parents, in the case of the common eel, having travelled hundreds of miles from fresh-water rivers and ponds in order to breed here-they breed nowhere else. We know that the sun's light does not penetrate below 200 fathomsso that one is led to ask, "What is the good of being transparent if you live at the bottom of the sea, at a greater depth than this?" There is also a very beautiful prawn, which I dredged in Norway in 200 fathoms, which looks like a solid piece of clearest, colorless glass. And then there are some very beautiful little stalked creatures (called Clavellina), fixed to the under side of rocks in the tidal zone, which are absolutely like drops of solid glass an inch long. One cannot easily imagine how colorless transparency can be of "life-saving value" to these varied inhabitants of the dark places of the sea-bottom-any more than we can assign any life-saving value to the brilliant, gem-like coloring of some of the sea-anemones which live in the dark on the undersurface of rocks.

The most probable view of the matter is that neither the colorless transparency of the one set nor the brilliant coloring of the other has any value; it just happens to be so, and is not harmful. So, for instance, some crystals are colorless, some blue or green or yellow or red, without any advantage to them! On the other hand, we know that a large number of the animals which live in the dark unfathomed depths themselves produce light, that is to say, are phosphorescent, and it seems probable that at great depths, though there is no sunlight, the sea bottom is illuminated—we can only vaguely guess to what degree-by the strange living lanterns, fish, crustaceans, worms, and even microscopic creatures, which move about in quest of their food, carrying their own searchlight with them. Another suggestion is that the eyes of these inhabitants of the dark may be more sensitive than our own, and even be affected by rays invisible to us. This, however, is not probable, since whilst there are among them some with enormous eyes, we find that at the greatest depths (two to four miles) even the fishes have no eyes at all, and at a depth of a mile there are many shrimplike creatures in which the eyes have been completely transformed into peculiar "feelers," or otherwise aborted. So that we cannot suppose there is a possibility of developing the degree of sensitiveness greatly beyond that of terrestrial animals. A limit of obscurity is reached when it is of no use having an eye at all and eyes cease to have life-saving value, and accordingly are not maintained by natural selection.

The transparency and colorlessness of marine animals which float near the surface is, on the other hand, obviously useful, and to this group our jelly-fishes belong. Not only do they escape observation by their transparency and general absence of color, but some actually have a blue transparent coloring which blends with the blue color of the sea. Such are the gas-holding, bladder-like sac as large as your fist called the "Portuguese Man-of-War," and the little sailing "Velella," both of which float, and even protrude above the surface, so as to catch the wind. Others are only semitransparent, and others are marked with strong red, brown, or yellow streaks. Many of the smaller kinds of jelly-fish have eyes which are bright red in color.

The animals to which the name "jellyfishes" is now more or less strictly applied are (as that fine zoologist Aristotle knew) in their structure closely similar to the sea-anemones, but even simpler. They are called "the Medusa" by naturalists. Their disc-like bodies are largely formed by a jelly-like material, on the surface of which are stretched delicate transparent skin, nerves, and delicate muscles, whilst in the middle of the disc, on the surface which faces downwards as the creature floats, is the mouth, leading into a relatively small pouched cavity excavated in the jelly, from which a delicate system of canals is given off, and radiates in the jelly of the disc. There is, as in the sea-anemones, only one continuous cavity. The edge of the disc is beset with fine, sensitive tentacles, sometimes many feet in length, and the lips of the mouth are often drawn out into a sort of depending trunk, or into four large tapering lobes or lips of jelly, which, with the longer tentacles, are used for seizing prey. The commonest jelly-fish on our coast-so common as to be "the" jelly-fish par excellence-is often to be seen left on the sands by the receding tide or slowly swimming in quiet, clear water at the mouth of a river enormous numbers. It is known as Aurelia. It is as big as a cheese-plate, and the four pouches connected with the stomach are colored pink or purple, and appear in the middle of the circular plate of jelly, like a small Maltese cross. The reproductive particles (germcells and sperm-cells) are produced in that colored region, and escape by the mouth. There is a fringe of fine, very short tentacles round the edge of the disc, and they, as well as the great lobes of the mouth, are provided with innumerable coiled-up stinging hairs or "threadcells," similar to those of the sea-anemones, which led Aristotle to call both groups "seanettles." Eight stalked eyes are set at equal intervals around the disc.

Usually accompanying the floating crowd of the common and abundant Aurelia are a few specimens of a very unpleasant kind of Meduca of a turbid appearance, often called "slime balls" by fishermen, from six inches to a foot in diameter. The tentacles on the edge of the disc of this kind of jelly-fish are very long and elastic, stretching to several feet, even yards, in length, and are provided with very powerful stinging hairs. The tentacles not infrequently become coiled around the body of a bather; the stinging hairs are shot out of the little sacs in which they are rolled up, and the I to the person stung result may be very pai eye of the dwellers in deep-sea darkness to a in this way and even dangerous. There are two other common large jelly-fish on the English coast, one with a wheel-like pattern of brown pigment on the disc, and the other with the mouth lobes very large and bound together like a column.

> The common Aurelia is remarkable for the fact that the young which hatch from its eggs attach themselves to stones and rocks on the sea bottom, and grow into little white tubelike polyps, about half an inch long, quite unlike their parent, with a crown of small tentacles surrounding the mouth, whilst they are fixed by the opposite end of the body. Then a very curious thing happens. The little polyp becomes nipped at intervals across its length, so that it looks like a pile of saucers-a dozen or more. And then the top saucer swims-away, as a minute jelly-fish, the next follows, and so on, so that the whole pile separates into a number of freely-swimming young, each of which gradually grows into a full-sized Aurelia. I have only once had the chance of witnessing this beautiful sight, and that was many years ago in a tank at the Zoological Gardens (they have no such tanks now), where the popy-like young (called Hydratuba) spontaneously put in an appearance, and proceeded to break up into piles of little discs, which separated and swam off as one watched them. The French poet, Catulla Mendes, imagined a world where the flowers flew about freely and the butterflies were fixed to stalks. His fancy is to some degree realized by the swimming away of the young jelly-fish from their stalks. There are a host of very minute jellyfish, measuring when full grown only half an inch or less in diameter, and originate as buds from small branching polyps, one kind of which is common on oyster-shells, and is called "the herring-bone coralline." The dried skins of these coralline polyps (which are horny) are often to be picked up with masses of seaweed on the seashore after a storm. The little jelly-fish are the ripe individuals of the polyps and produce eggs and sperm which grow to be polyp-trees. These, again, after growing and branching as polyps, give rise to little jellyfish here and there on the tree, which, in most kinds (though not in all), break off and swim away freely.

EDUCATED COWS

Do Music and More Milk Go Together? These are the days of scientific farming. Nevertheless it will come as a surprise to many to hear to what a degree of perfection the higher education of the cow has been carried by an American lady, Mrs. Howie by name, who has a farm in Wisconsin.

This lady, it is said, stimulates the milkgiving capacity of her large and amiable pets playing suitable music to them. She finds that the happy and sympathetic feelings engendered by the harmony produce a particuof clinging growths (among them Rhabdo-pleura!) and sheltering wonderful deep-water larly abundant flow of rich and pure milk.

Not only does Mrs. Howie's plan contribute to the happiness of herself and her bovine friends, but it leads to very excellent practical results, for there is probably no woman in the neighborhood who can show so large an income from dairy farming as she.

Evidently there is commonsense as well as sentiment in her plan. It has long been recognized that anything which frightened the cow, as thunder and lightning or harsh noises and actions, injured the quality and flow of the milk. Why then, should not soothing the animal by agreeable sounds improve the quality and flow of the fluid? This is the reasoning upon which Mrs. Howie has proceeded, and it has been amply justified by results.

For long she maintained that the farmer did not turn the cow's love of music to practical advantage. He should know, she said, that the cow is a slow, quiet, peace-loving creature. Harsh and violent sounds disturb her serenity and her digestion, while soft, low harmonies promote her well-being. Is not "chewing the cud" a phrase synonymous with

placid happiness and contemplation? Following out these ideas, Mrs. Howie for softening water), and down falls the dis- plays soft, low harmonies to her cows, gener-

ally upon the mandoline. Every cow hears at least one tune at milking time. A favorite with nearly all the stable is the old, sentimental song, "In the Gloaming," with its soft, low melodies. The result of playing this soothing tune to one of the cows has been to increase her yield of milk by one third.

Mrs. Howie gained a profound knowledge of music and the arts and the refinements of life before devoting herself exclusively to cow culture. She was formerly a Milwaukee society woman, and followed the usual round of society life until circumstances led her to take up farming. Some inquirers who had heard of her experiments in music and cow culture obtained an introduction to her and visited her the other day at her farm, where they found her in the midst of her pets.

"I never approach them without a kindly word," she declared as she sat chatting with a black-nosed cow, "and, if that is coddling, I certainly am a coddler; but any fancier who studies cow nature along with scientific cow feeding will coddle them, too. Yes, I love my I may say they are my babies, for you see my children are all grown up. I believe that the stronger the maternal instinct in a woman, the greater are her chances for success in cattle raising. You see a cow is a mother nearly all her life, beginning at two years.

"I tell every man or woman who has ambition to become a stock fancier that it is not enough to invest in blooded animals and to study methods in scientific feeding. One must have a large reserve fund of love upon which to constantly draw, quite apart from the sentimental side of it; for you may take my word for it, every kindly stroke, every tender word, every bit of attention and appreciation bestowed upon the gentle creatures will come back to you in dollars and cents."

SERVANT'S SENSE OF ORDER

Mrs. Smith was engaging a new servant, and sat facing the latest applicant.

"I hope," said she, "that you had no angry words with your last mistress before leaving? "Oh, dear no, mum; none whatever," was the reply with a toss of her head. "While she was having her bath, I just locked the bathroom door, took all my things, and came away

LOVE'S DELAY

as quiet as possible.'

For nine long years he had been wooing the fair daughter of the farm. "Jennie," he mused, as they sat on the old rail fence, "I read the other day that in a thousand years the Lakes of Killarney will dry up." clutched his arm excitedly. "Oh, Tom!" she exclaimed. "What's the matter, lass?" "Why, as you promised to take me there on the honeymoon, don't you think we'd better be a little little—they come next to my family; in fact, careful that they don't dry up before we get there?" N.B.-The next week the wedding bells rang in the village church.

CHANGE OF CONVICTION

For three weeks he had borne all the horrors of house-cleaning without a murmur. Then his patience gave way.

"And you," sobbed his wife, "you used to tell me I was your queen."

"Yes," he said, with a wild glare in his eyes; "but when a man finds his queen has used his best tobacco-jar for pale oak varnish and his meerschaum pipe for a tack hammer, he begins to grasp the advantages of a re-