लļałherndfies. 粦

All communications intended for this department should be sent before the 20th of each month to Chas. Clarkson, B.A., Seaforth, Ont.

CORRESPONDENCE

S.F., Petrolia.-The whole of McLellan's Elementary Algebra is required for Second ClassElementary rules; factoring; H.C.M.; L.C.M.; square root ; fractions; ratio ; simple equations of one, two and three unknown quantities ; indices and surds; quadratic equations.
F.E.F.-You have not given the problems and references to the text-books, as our rule requires. Attend to this next time.
47. "The dividend is 2547346 ; the remainder is 2654 less than the divisor; find the divisor." The data appear to be insufficient.
48. Pub. Sch. Arith., p. 112, question 40. The number is the least multiple of 120 , which is less by 15 than a multiple of 25 . Taking $120,240,360$, etc., we see that 375 is the least.
49. ' Counting the eggs by 2 's, 3 's; 4's, 5 's or 6's there is always a remainder of 1 ; but counting by 7's there is no remainder. Find the least number of eggs possible." L.C.M. of $2,3,4,5,6=60$. No. required is a multiple of 60 that is less by 1 than some multiple of 7 . Ans.-301.
50. "A boy spent 20 cts. for 20 pencils, some at 4 c ., some at $\frac{1}{2} \mathrm{c}$. and some at $\frac{1}{4} \mathrm{c}$. each. How many of each kind did he buy? "t. The average is 1 c each, so we have $3,+\frac{1}{2},+\frac{3}{4}$, i.e., $12,+2,+3$ as the differences from the average. Make the losses cancel the gains. Take 3 at $4 \mathrm{c} ., 15 @ \frac{1}{2} \mathrm{c}$., and 2 @ 4c.; 20 for 20 cts.
51. H. Smith's Arith., p. 199, IV. 5. Take B's flour as the standard of quality; then the quality of $A ' s, B ' s, C$'s flour are as $55: 50: 58$; and taking into account the quantities the money must be divided as $55 \times 1.25: 50 \times 150: 58 \times 225$. . And the money to be divided is 500×6.72. The propor tions reduce to $275: 300: 522$; hence A's share
$=5 \times 672 \div 1097=\$ 842 \cdot 301$, etc., for B and C.
S.F.P.-52. "A person buys 6% bonds, the interest on which is payable yearly and which are to be paid off at par 3 years after the time of purchase. If he invests his interest when received at 4% compound interest, what should he pay for the bonds to realize 7% compound interest on his money?"
Supposing the bond is for $\$ 100$, its amount at the end of three years $=100+6\left(1 \cdot 04^{2}+1 \cdot 04+1\right)$. Let $x=$ price to be paid, then at 7% compound interest, this will amount to $x(1.07)^{3}$ at the end of the third year. Hence the equation,

$$
x(1 \cdot 07)^{3}=100+6\left(1 \cdot 04^{2}+1 \cdot 04+1\right) ;
$$

and $x=\left\{106+6\left(1 \cdot 04^{2}+1 \cdot 04\right)\right\} \div 1 \cdot 07^{3}=$ etc.
62. $\frac{5 x^{2}+x-3}{5 x-4}-\frac{7 x^{2}-3 x-9}{7 x-10}=\frac{x-3}{35 x^{2}-78 x+40}$

Take the fractions on the left together ; sum $=0$, and the denominator is the same as the denomin ator on the right.
$\begin{aligned} \therefore x-3 & =0, x=3 . \\ \text { 53. } \frac{5}{x-1}+\frac{4}{x+2}+\frac{21}{x-3} & =\frac{5}{x+1}+\frac{4}{x-2}+\frac{21}{x+3}\end{aligned}$
Combine in this way :
$5\left(\frac{1}{x-1}-\frac{1}{x+1}\right)+4\left(\frac{1}{x+2}-\frac{1}{x-2}\right)$

$$
+21\left(\frac{1}{x-3}-\frac{1}{x+3}\right)=0
$$

or, $5\left(\frac{2}{x^{2}-1}\right)-4\left(\frac{4}{x^{2}-4}\right)+21\left(\frac{6}{x^{2}-9}\right)=0$
i.e., $\frac{5}{x^{2}-1}-\frac{8}{x^{2}-4}+\frac{63}{x^{2}-9}=0$
$\therefore x^{4}-5 x^{2}+6=0, x= \pm \sqrt{2}$ or $\pm \sqrt{3}$.
54. $x^{4}-4 \frac{1}{3} x^{3}+5 \frac{1}{3} x^{2}-4 \frac{1}{3} x+1=0$
$\therefore x^{2}-4 \frac{1}{3} x+5 \frac{1}{3}-4 \frac{1}{3} x^{-1}+x^{-2}=0$

$\therefore\left(x^{2}+x^{-2}\right)-4 \frac{1}{3}\left(x+x^{-1}\right)+5 \frac{1}{3}=0$

$\therefore\left(x+x^{-1}\right)^{2}-4 \frac{1}{3}\left(x+x^{-1}\right)+2 \frac{1}{3}=0$, a quadratic.
J.H.F., Wiarton, solves No. 33 as follows:

Given $(x+y) z=a ;(z+x) y=b ;(y+z) x=c$. Add the three and we get $x y+y z+z x=\frac{1}{2}(a+b+c$; take the first from this and $x y=\frac{1}{2}(b+c-a)$, and $y z$ and zx are symmetrical with this result. Hence $y z \times z x \div x y=z^{2}=\frac{1}{2}(c+a-b)(a+b-c) \div(b+c-a)$ $\therefore \mathrm{x}^{2}$ and y^{2} by symmetry. He wishes a solution
of this question :
55. "If $\alpha_{1} \beta$ are the roots of $\mathrm{x}^{2}+\mathrm{px}+\mathrm{q}=0$, and α_{1}, β_{1} are the roots of $\mathrm{x}^{2}-\mathrm{p}_{1} \mathrm{x}+\mathrm{q}_{1}=0$, then $\alpha_{1} \beta$ $+\beta_{1} \alpha$ and $\alpha \beta+\alpha_{1} \beta_{1}$ are the roots of the equation
$x^{2}-p p_{1} x+p^{2} q_{1}+p_{1}^{2} q-4 q q_{1}=0 . "$
We must show that $\mathrm{pp}_{1}=\left(\alpha_{1} \beta+\beta_{1} \alpha\right)+$
$\left(\alpha \beta+\alpha_{1} \beta_{1}\right)$ and that
$p^{2} q+p_{1}^{2} q-4 q q_{1}=\left(\alpha_{1} \beta+\beta_{1} \alpha\right)\left(\alpha \beta+\alpha_{1} \beta_{1}\right)$; (A)
or, $\left.\mathrm{pp}_{1}=\alpha+\alpha_{1}\right)\left(\beta+\beta_{1}\right)$. But $\alpha+\beta=-\mathrm{p}$; $\alpha_{1}+\beta_{1}=p_{1}$
$\therefore-\mathrm{pp}_{1}=(\alpha-\beta)\left(\alpha_{1}+\beta_{1}\right)$ and this is manifestly not identical with the required result unless $\alpha_{1}=\beta$, and the second equation is made $x^{2}-p_{1} x+q_{1}$, or else the last equation $x^{2}+p p_{1}+e t c$. In the second part we see that $4 q q_{1}=\alpha \beta \alpha_{1} \beta_{1}$, and
$\mathrm{p}^{2} \mathrm{q}_{1}+\mathrm{p}_{1}^{2} \mathrm{q}^{\text {gives } \alpha_{1} \beta_{1}\left(\alpha^{2}+\beta^{2}\right)+\alpha \beta\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)+}$ $4 \alpha \beta \alpha_{1} \beta_{1}$
or $\mathrm{p}^{2} \mathrm{q}_{1}+\mathrm{p}_{1}^{2} \mathrm{q}_{-4 q_{1}=\alpha_{1} \beta_{1}\left(\alpha^{2}+\beta_{2}\right)+\alpha \beta\left(\alpha_{1}^{2}+\beta_{1}^{2}\right)}$ which does not agree with the product (A) unless $\alpha_{1}=\beta$. It seems that in some way the question is
imperfectly stated.
S.I.- Your problem seems to involve one of the higher curves and to lie beyond the ordinary limits of this column. Perhaps some reader may find a suitable solution; we give the problem
56. A pole 100 feet high and 1 foot in diameter at the base, and 1 inch in diameter at the top, has a vine twined around it. The circles made by the vine are 1 foot apart. What is the length of the
vine?
57. By Zano, Shelburne. - We strongly suspect If any ingenious reader can same class as No. 56. If any ingenious reader can calculate the length of the carpet, here is the problem :-" A carpet 3 feet wide is laid diagonally in a room 40×13 feet so that each corner of the carpet touches a side of the room. The carpet is cut off square, find its length." Practically the problem can be solved length." Practically, the problem can be solved
most easily by drawing the figure to scale and read most easily by drawing the tigure to scale and readary solution by, we do not perceive any elementfriends to search for one G.W.D., Marsh Hill-
in saying that there are-1. "Is a teacher justified swers in the Publice at least twenty incorrect answers in the Public School Arithmetic?" Very likely ; it requires extraordinary care and labor to get mathematical copy set up accurately. Probably the second edition will be revised and corrected. You ought to point out the revised and corrected. ers. 2. "Is it necessary for pupils to show full work on Entrance Examination, or will the shor full way possible be accepted?" We wink the shortest pupil ought to put down his work articulately and in good, clear order, not crowded together. The method of doing the question should certainly be indicated, so that in case of any slight mistake the examiner may be able to give the candidate full credit for knowing how to do the question, although he may have made a small slip in the execution of it. 3. "In papering walls, why is not the height of
the room taken into account?" Prole the room taken into account? Prol,ably you refer to p. 78 of the P. S. Arith. The height is there taken into account--"a room of ordinary height." The page is rather obscure, however, and might easily have been made more precise.
58. See P. S. Arith., p. 146, No. 28. The average time of arrival is the average of $10 " 15^{\prime \prime} 10^{\prime \prime}$; $10 " 10^{\prime} " 30^{\prime \prime}$ etc. This is $10{ }^{\prime \prime} 12^{\prime} ", 40^{\prime \prime}$ ", from ${ }^{\prime \prime}$; which take $3^{\prime \prime} 15^{\prime \prime}$ to get the schedule time.
59. See P. Sch. Arith. p. 151, No. 102. Hint.Keep separate accounts for the water and the vinegar in each vessel, thus, at the end of the first stage $A_{1} 0 ; B 1,1 ; C 4,1$. At the end of second
 the first stage
 60. By A Surs number of gallons.
60. By A Surscriber, Simcoe.

A market woman has an exact number of dozens of eggs. She finds that she can count them by 8 or by 10 or by 20 , always having 4 eggs over. Find the least number of dozens she can have?
Solution. - L.C.M. of $8,10,20=40$, hence we must find the least multiple of 40 that with 4 added becomes a multiple of 12 ; but of $44,84,124,164$, etc., 84 is the least will contain 12. Ans. -Seven dozen.
61. By the same. See No. 48 above.

Remark.-The mass of correspondence to be handled this month has prevented the appearance of the solutions originally intended for this issue. We are glad to find out the needs of our patrons and to supply them as far as possible. What is easy and plain to one may seem difficult to another ; the Editor of this Department wishes to be useful to working teachers in the first place, and secondly to those who are going up for examinations, and thirdly, to lovers of mathematics generally. Will all our friends make an effort to bring the claims of The Journal impressively before the minds of non-subscribers?

Book Rołices, ełc.

Any book here reviewed sent post-paid on receipt of price. Address The Grip Printing \& Publishing Co.,
Toronto.

Euripides, Medea. M. A. Bayfield, M.A. Mac-
Millan's series of Elementary Classics.
Admirable as most of the books of this series. The scenic explanations add a great deal of inter. est. Mr. Bayfield's name renders further comment needless.

Papers read before the Mathematical and Phusical Society of Toronto University during the year 1890-91. Toronto : Rowsell \& Hutchison.
This booklet contains five papers of very great leading problems of physical conversant with the paper on "Poetic Inysical science. Prof. Baker's and Mr. Chant's on "The Station in Mathematics," will appeal to the taste "The Structure of Matter," whose who do not burn all educated people, even those who do not burn incense at the shrine of
mathematics.

Promissory Notes, Drafts and Cheques. What a Business Man Should Know Regarding Them By J. W. Johnson, F. C. A., Principal Ontario
Business College, 'Belleville. Published by Ontario Business College, Belleville.
This is the third edition of this useful and popu lar manual, the substance of which first appeared in the Educational Journal in 1888. The subject as indicated by the title, commends itself as one of The fact that the author has to business men years lecturing upon this and bind for fourteen Ontario Busingess College, and kindred topics in has stood the test of pug, and that the little book ed a third edition, publication and has now reachmerits and value of the work. guarantee of the

SHEPP'S PHOTOGR $\overline{P H}$

This is OF THE WORLD.
picture albums of the most beautiful and complete than five hundred full paished. It contains more scenes, cathedrals, mogqe photographs of "street lisks, pyramids, active vol, temples, castles, obe and river scenery, with incanoes, mountain, lake and river scenery, with instantaneous pictures,
showing the every-day life of showing the every-day life of the people in various paintings and statuary copies of the most famous Europe." There are scenes ne leading galleries of cities and famous resorts of Eurly from the great but from Egypt, Palestin Europe and America, Australia and other remote countria, India, China, graphs are at once accurate and aries. The photomany cases seem to accurate and artistic, and in to the scenes and historic remains beholder at once "old in story." To the few whins of distant lands eged to travel amid the scenes who have been privilgraphic pictures will scenes here depicted, these while to the many who can never

