SCHOOL WORK.

MATHEMATICS.

ARCHIBALD' MACMURCHY, M.A., TORONTO, EDITOR.

PROBLEMS.

Proposed by D. F. H. WILKINS, B.A., Bac. App. Sci., Math. and Sci. Master, Mount Forest H. S.

43. Prove
$$(x+y)(y+z)(z+x)-x^3-y^3-z^2=4\{(a+b)(b+c)(c+a)+2abc\}$$

if
$$x=a+b$$
, $y=b+c$, $z=c+a$; and
= $12\{a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)\}$

if
$$x = a - b$$
, $y = b - c$, $z = c - a$.

44. Wishing to know the weight of some auriferous quartz, a mineralogist floats a metal cylindrical cup of radius r inches, height h inches, in pure water, and finds that it floats with $\frac{1}{n}$ th of its height out of water. On adding the mineral it descends till $\frac{1}{n}$ th of its height is out of the water. Given the weight of a cubic inch of matter, $\frac{1}{10}$ oz., show that the quartz weighs $\frac{1}{10}$?

 $\pi r^2 h\left(\frac{m-n}{mn}\right)$ oz.

SOLUTIONS.

(See Fanuary number.)

Prof. E. Frisby, M.A., U. S., Naval Observatory, Washington, D.C.

24. (1)
$$\Sigma \sin (a \pm \beta \pm \gamma \pm \delta)$$

 $= \sum \sin (\alpha \pm \beta \pm \gamma + \delta) + \sum \sin (\alpha \pm \beta \pm \gamma - \delta)$

 $=2\Sigma \sin (a\pm \beta\pm \gamma) \cos \delta$.

(2) $\leq \cos (a \pm \beta \pm \gamma \pm \delta)$

= Σ cos $(a\pm\beta\pm\gamma+\delta)+\Sigma$ sin $(a\pm\beta\pm\gamma-\delta)$ = 2Σ cos $(a\pm\beta\pm\gamma)$ cos δ .

Resolving Σ sin $(a\pm\beta\pm\gamma)$ and Σ cos $(a\pm\beta\pm\gamma)$ in the same way, we ultimately obtain 2^{n-1} sin a cos β cos γ cos δ a 2^{n-1} cos a cos β cos γ cos δ respectively.

JAMES MILLER, Math. Master, Bowmanville H.S., and MILES FERGUSON, Math. Master, Niagata Falls South H.S.

29. Exp. nx^{n+1} etc., divided by exp. x^n - etc., gives quot. nx - (n+1) and remainder $n(x^2 - 2x + 1)$.

Now $x^n - nx + n - 1 = x^n - 1 - n(x - 1)$ = $(x - 1)\{x^{n-1} + x^{n-2} + \dots + 1 - n\}$ and if we put x = 0, the exp. in 2nd brackets = 0, \dots $(x - 1)^2$ is a factor of $x^n - nx + n - 1$ \dots $(x - 1)^2$ is the G. C. M.

Messrs. Wilkins, Millar and Ferguson.

30. Let M denote the point where they meet, and x the number of hours they travel before they meet. Now A, travels from O to M in x hours, and from M to C in a hours, OM: MC:: x: a and $OM: MC:: \beta: x$ $A : x = \sqrt{a\beta}$ $A : x = \sqrt{a\beta}$ and A : x = x = x which is the correct result.

Messrs, Millar and Ferguson.

31. Multiplying, etc., we obtain $c^2x + a^2y + b^2z = 0$ $b^2x + c^2y + a^2z = 0$

$$\therefore \frac{x}{a^4 - b^2 c^2} = \frac{y}{b^4 - a^2 c^2}$$

$$=\frac{z}{c^4-a^2b^2}=\frac{1}{p} \text{ say,}$$

and substituting in any equation, we find $p^2 = a^0 + b^0 + c^0 - 3a^2 b^2 c^2$, whence $x = \frac{a^4 - b^2 c^2}{p}$ with similar values for y and z.

[It is gratifying to find our mathematicians taking such lively interest in this department of the magazine. Several solutions are unavoidably held over.]