THE WEEKLY MIRROR.

NATURAL HISTORY.

THI SWORD-FISH.

The more we examine the works of ProHdence, the more full of wonder they seem to be. The contrivance which is shewn in the formation of every aninal, so that its form may suit its nature and its habits, the climate in which it lives, and the situation to which it belongs, shews indeed the work of and Almighty hand. This is sernin every enimal which breathes; though we are often too thoughtless to consider it ; and often, indeel', throughignorance, we do not underatand it: Whenever we examine attentively any one of the creatures which move upon the earth, we find that there is sufficient canse' to excite our admication of its great Maker; and it is with this view that a little attiention to the natural history of animals yitiay be made 80 useful as well as so agreeable a study:

- Thie sword-tish is a very large and powerful animal; often growing to the length of tirenty feet, and upwards. He has no tceth and'no scales, so that, notwithstauding his size', 'he might, on these accounts, appear a defenceless amimal; and hardly able to procure for himself a prey sufficient to sustain a body of such tange dimensions. Fe is however furnished with a wonderfal weapon, which makes him a tery powerful and very formidable creature. This weapon is, in fact, the upper jaw lengthened out to sach an extent as to form a hard, strong and sharp sword. With this weapon these fish are able to attack larger ones than themselves, and even the whale stands in are of the sword-fish. We may judge of the power of this animal by the following account:-

In the year 1725, some shipwrights, when repairing s ship, found part of the sword of one of these fish. It had passed ttrough more than eightinches of the timber. The workmen declared that they could not, by less than eight or nine strokes, drive an irom pin of the same dimension to the same depth; and this had been done by onestroke of the sword-fish, without any shock being felt by the persons in the ship.

There is, in the Dritish Muscum, a large piece of timber frons the bottom of a ship, with the sword of this fish quite through it. The ship was an East Indiaman, (the Leopand.) The fish was killed by the violence with which he drove himself against the vessel.

It: is said that the sword-fish and the whale never mect vithout coming to battle, and that the sword-fish generally begins the guarrel. If the whale can set a blow of his fail to take effect upon the sword-fish this
usually tinishes him ationedjabut the swordfish generally contrives to aryoid this stroke, and to plunge his weaponifto the sides of the whale. When the wibly sees a swordfish darting at him, he divid to the bottom of the water, and the givitafich- follows him ; and then he rises toflte surface, and thus the baitle goes on arditlaste.for a long time. The whalo has 离 muoh, fat and blubber upon him that he, does not suffer from his wounds so much the whould oxpect.

COMMON THINGS.

No. 5.-SAltis.

The ocean is one vast store of mineral substances in the state of solution. The most abundant mineral in this greatliquid deposit is common salt, which is supposed to constitute about one twenty-eight part of the whole ocean. Numerous other salts, sǔch as glauber salts, epsom salts, salt petre, alum; indeed there is reason to believe, that erery mineral which is soluble in water, is containod, in greater or less quantities, in the briny. deep.
uesides the occan, where common salt is found in such quantities as to keep it from putrefaction, mines, hills, and even mountains, are composed of the same useful substance.

In Poland, che salt mines have been worked for thiee or four centuries at least. They are now carried to a great depth, and extend several miles under ground. They are entered by six shafts.five or six foet in diameter, which lead to various accommodetions beneath, such as chambers, chapels, and altars, ornamentert and supported by pillars, the whole being constructed of salt.

Beneath these mines are numerous springs and streams, not only of salt, but of fresh water, which supply the numerous hands engaged in them. In some instances hydrogen gas is formed in such quantities in these mines, as to produce disastrous explosions.
Though the salt mines of Poland, and the neighbing countrie3, are more numerous and hiare been longer wrought, than any other in Europe, they furnish this useful and necessary materiai in much less abandasce at present, than those of Cheshire, in Bugland. The science, skill and enterprize of the English, not only furnish their own tables with: salt as thisy do with most other articles of sustenance and luxury, but they place 'Liverpool salt' upon many of our tables, and even upon those in the vieinity of the salt mines of Poland.

In Spain; the-deposits of salt rise into
hills:and.even mountains, of great elevation and:extent. Thesame useful and.necessary substance is found in great quantities in Atrica; frequently dispersed through the soil.

In North America, the deposits of rook sait have not been discovered in many instances risingabove the surface of the ground, but beneath the surface it must be oxtensively diffused. Salt springs are discovered in numerous places, in different parts of the country. Some of these springs are upon, or within a fer feet of the surface; others are procured by perforating the earth five or six hundred, and in some instances eight or nine hundred feat, from which depth the salt water rises from a source probably not well understood, and disclarges itself in a stream upon the surface, in sutaciont alundance to supply extensive manufactories of this article of domestic and political economy.
In some of the natisal deposits of rock salt, it is found sufficiently pure for use, and requires only to be reduced to a powder; in most instances, howerer, it is first dissolved in water and then evaporated. When the material is procured from springs or the ocean, the manufactory of it is little more than exaporation, which is produced bothr by the sun and artificial heat. -

In the West Indies, and many places upon the coast of America, where water for the manufactory of salt is taken from the ocean, the eraporation is effected by this heat of the sun. The brine is letinto artificial ponds or vats, where it is exposed to the rays of the sun, until the evaporation preeipitates the salt into crystals in the form of cubes, that being theshape in which the muriate of soda, (common salt) crystalizes:

The process of crystalizing comrionsilt is different from that'of most a her salts:As hot water dissolves very little more of common salt than cold water, it can be crystallized, or brought into a solid state, only by evaporation; of most other salts, such as glaube: salts, (sulphate of soda) epsonisaltis (sulphate of magnesia) alum, (sulphate: of ajumine) cópperas, (sulphate of iron) blue vitriol, (sulphate of copper) and many others; hot water holdsin solution much larger quantities than coldazater. Consequently, as hot water which is saturated with'gny of the last mentioned-salts becomes cool, it throws down the mineral whiich is disgolved in it, in the form of crystals- of different shapes, each salt having: a form of its own, where it crystallizes.

Taking adrantage of these different principles in crystallization, the manufnctirers ofsalt form, from water takenfrohy the ocean; commonsait during the summer, by.evaport-

