The Portage, Weetbourne and North Western Railway has also quite recently changed hands and is now controlled by a syndicate at the head of which was the late Sir Hugh Allan, among other members being Audrein Allan, Robert G. Allan, of Liverpool, B. If. Buxton, of London, Eng., Lord George Campbell, W. L. Boyle, A. 'T. Drummond, Lien't-Governor Dewdney, H. N. Ruttan and Duncan MacArthar. Fifteen miles of tbis road were graded late in the fall and when tracklaying is completed on this sectinn, there will be a total of fifty milps of finished road. Trains are now regularly running to Gladetone, and it is intended to reach Minnedosa by July and to cross the River Assiniboine by October next. Up to this point, the railway pisses through a country already well settled; beyond it, its courie lies as near as possible directly to Prince Albert on the North Saskatchewan,
The outlook in the North.West, notwithstanding the unheal'hy real estate speculations is on the whole very favourable. Immense tracts of country aro being opened to sett'ement through the construction of the rullways, and even ditant points on the North Saskatchewan are now readily reached during the summer months through the greatly improved c'ass of steamers which ply on Lako Winnipeg and that river. A greater area, a'so, of desirable land has been found than was supposed to exist. It now only requires an effective immigration aystem to altract the surplus population of other parts of the world. The class of settlers who have tuken up land during the past has bren on the whole very superior and it is extremely desirable that more of heir classs should be found making their home in the Great North-West.

Monster Stran Whistles.-People who in thin oountry, complain of the noise made b_{5} railway whistles and factory "hootere" may congratulate theniselves that they have not tolisten to the enormous whistles now mannfactured in the United States. A firm in Bridgeport, Connecticut, has recently completed one for a Canadian anv mill, the bell of which is 20 in . in diameter, a quarter of an inch thicts and 27 in . long, and is placed five inches from the cup which delivers the stemm. The valve is of the ordinary spring pattern, and is 4 in . in diameter. The weight of whistle and valve is 406 lb ., and the cost of the monster is 500 dollars. The mill, for the protection of which it has been made, has been several times burnt down, and the object, therefore, of the whistle is to arouse the surrounding country in case of a reoccurence of the catastrophe, and also to carry signals to the wood-choppers in the neighbouring forents. There is another big whistle at New Brunswick, in New Jersey State, with 2 deep bass hum which serves as the clock regulator for farmers and others within a radivz of 30 miles of the town. There is also a whistle at S.andy Hook, 15 in . in diameter, while many of the ocean and Sound steamer have whistles from 8 in , to 10 in ., which can be heard from 10 to 20 miles.

ON HYDRAULIC LIFTS FOR PASSENGERS AND GOODS

BY EDWARD BAY\%ANL ELLINGTOX.

(Continued from Pape 11.)

Dirkct-acting Lifts.

This safor construction is to be found in the cass of thone lifts which are not hoisted up from above, but pushed up from
below, in auch a matner that there is always a supporting coo lumn underneath the cage. Lifis have been constructed on this principle and warked by ordinary mechanical meana, the supporting column being a rack, gearing into a pinion at the ground level ; or, in another arrangement, the supporting coJumn inas a screw thrmad on its periphery, and is drawn un or dowill by weans of a nut at tha ground lovel. Linking to anfory alone, it would not be prossible to find fallt with this lattar arrangement ; but the practicable spood nf workin \angle must bo extremely slow, and the nower ahsnrbal in friction very grent. An hydraulic ram in clearly the right thing to use for the san porting column of the lift; and he adopting the direct-arting hydraulic ram, as shown on Paze 36, it wonli appear as if the gres'ion of ahsolute safety in lifts were solved. But it is soon found that there is something atill required.

An hydraulic lift, with a vertical direct-acting ram, presents some rather curious problems in construction, which increase in dificulty as the height of lift is increasen, and the warking prensure reduced. A inw.pressure lift of this type has to be made suhject to the following conditions:-
(a) A wrill or bore hole has to be sunk to a depth somewhat greater than the height of the lift, in which well is inserted the lift cylinder;
(b) The ram has to be of an area sufficient, when acted upon by the pressure of water at command, to overcome friction, and to raive both the lnad nnd the surplas weight reqnired for lowering the cage when emptr;
(c) The weight, and alno the dinplacement, of the ram increngas with its height and dismetor:
(d) The bottom of the wrll being uaually far baino the drainage level, the water need in working has to be forced up to the drain hy the deacending ram;
(e) The preswure unnn the ram at any time during its motion will vary proportionalls to the diffrrence between the head of watar and the height of lift at that time.
Under these conditions it will he meen that, with a simple ram, equilihrium canant be maintained. With a given nrussure and load to be lifted, there is a limit to the huight of lift; the pressure on the area of the ran diminishing an the ram ascunide. In ascenting with a given pressure of water, the ram wruld run out a certain distance, and then stop; and in descending with a given weight it would descend a certain distance, and then stop.
It in tharefore nocessary to balance the varying displarement, in all high lifts working with low nrrasures of wa'er. It is alsn necessary, in order to avoid great waste of yower, to balancs the weight of the ram.
The usual practice has been to introduce cmunterweights, and chains travolling over head sheares, as shown in Fig. 11, Page 14. The chains are of unfficient weight to balance the displacement of the ram. When the cage is at the bottom, the ram and caye are balanced by the weight of the counterweight ininus the weight of the chain; and when the cage is at the top, the ram and cage ate balanced by the weight of the counterweight plus the weight of the chain. The use of counterweights and chains unfurtunately destroys the simpli. city and absolute safety of then apparatu4 ; for, though the riske attending the use of ordinary chain liftn ars eliminato:l, anil the chances of breakage are remote, there is still a reisouable possibility of accident.
In direct-acting hydraulic lifts the balance chain and reights entirply alter the character of the strains on the ram. For n considerable portion of its length from the top, the ram, instead of supporting the cage an a column, is thus really hanging from it : part of the ram is always in tension, and another part is always in compression, while the neatral plane varies in position according to the presanre on the ram. Should the ram break above the neatral plane, or the attachment between the ram and caxe give way, the cage would be violently draggeil by the counterweight to the top, the fall heing as it were upwards instend of downwards." A lift so constructed does not therefore fulal the conditions of asfety reqnired in a first-cluss passenger lift ; and meana must be fonnd for doing away with the chains and connterweights, learing uothing but the hy. draulic cylinder, the ram, and the cage.
This condition can be obtained by increasing the working preanure, and by reducing the area, and thrrofore the displace. ment, of the ram; leaping only tufficient section to prevrat its bending under the load, as ahown in Fig. 9, Page 36. The

[^0]
[^0]: - This happoned at the Grand Hotel in Paris, when sereral passensers wero killed.

