'The action of steam as an interceptor of the sir supply, is howoser, of much moro importance than its cooling power, and as such water rarely ovar, in ordinary cases never, acts. 'This is easily and forcibly eaplained Suppose n fire in a room; steam is turned on, and in two or three minutes the whole spar e is filled with steam of atmospheric presbure, the supply, howeves, continues, and if the pressure in the room is not to augment, it must issue through some opening or cruvicer, and if this is the case it will bo obvious that no air can have ingress unles: forced in as by a blast-pipe. This is, however, an extreme case, for it is known that even before a room is completely filled with steam of the same pressure as the atmosphere, the arr becomes so pregnant with moisture that it ceases to support combustion. There would be no danger of the steam-pressure becoming excessive in the room of a building, becanse builuings are alwaye of such a nature as to allow of suffici nt escape for its equalisation, or of keeping it at a moderate pressure ; and the idea that walls would be blown in and roofs lifted ofl, is perfectly ridiculous. Nor is the dang. r of converting a room into a blast-pipe of any consequence, because it will be seen that the steam wuuld have to blow out of one or more opel ings, while there was one or more opposite, nt which eir would enter through the impulse created by the steam flowing in a body and in ono direction A comparatively small quantity of moisture would, therefore, suffiee to prevent access of air, when we consider that one part of wate: occupies 1,600 times its original space if converted into team of a pressure equal to that of the atho-phere. It is "ell known also that fires only attain their full power when the buildjings or particular roams are entered through doors which give increased facilities for the admission of air. This danger is entirely svoided with steam, because no one has occasion to enter a compartment in which there is a fire, if it has been provided with steampipes. From the same fact, the danger associated with carrying water, either in vessel or hose and jets, to burning apartments is entirely avoided. One important fact must not be omitted. I hose acquainted with conflagrationsare well aware of the very destructive and dangerous action which water has upon cast iron, which now enters so largely in the construction of buildings. Sometimes a beavy ceilng or roof is solely dependent on one or more cast-iron columns, which are only too liable to becone very hot in a fire, and if highlyheated cast-iron is struck by a jet of water, either accidentally or intentionally, it is well known that it flics like glass, the more so if under a strain. No such consequences woud result from the use of steam, on account of its gradual action. Steam also has the advantage of operating upon all kinds of combustibles; water, it is well known, has no power on hydro-carbons, especially fiuids, such as oll, and the only remedy against these is the interception of the air supply. This steam will accomplish In a paper published in the Bratesh Archisect, and subsequently discussed by the Scientific and Mrechancal Society, Manchester, the advantages of steam over water are thus summarised by Mr. A. Isldebrandt: 1. Steam affords the opportunity of all arrangements for its applicati, a being made beforehand, and thus ready to operate without a moment's delay 2. Its use dues not give increased facilitues for the access of air, as is the ease with water when it has to be carried in vessels or hose and get to the apartment where the fire is, thus necessitating opening doors and other air iulets. 3. Its action is certain and unfalling in all cases wherever it is possible to apply it, siuce it operates upon any kind of combustible w theffect. 4. It does not in its successful application destroy property contiguous to the fire. 5. It entailin no dauger to life and limb of the of erator as when applying water. 6 . It does not require pumps or other apphances and machinery to convey it where it is required. 7. If proper provision fur its use has once been made it does not require any further human Iabour.

As regards tho condition of the stcam to be used, theory points to high-pressure steam as the most efficient, although it contains rather more heat in the same weinht of water than steam of lower pressure, for which reason it has been adyocated to reduce it by means of a reducing valve We, however, should deprecale the use of such an appliance if the object was to make steam suitable for the purpose under consideration, becausc steam so treated becomes slightly superheated. We should, however, not object to reduced steam being used if it was ncarest at hund in the case of fire. The efficiency of steam as a fire-extinguisher proved, an apparaius which in cuse of fire should, without human intervention, admit the same into
tho apartment where it occurred, must unquestionably bo an immense boon both to proprintors and insurance oflices ; and this Mr. Sanderson has succeeded in supplying in his self-at. ing apparatus which wo il'ustinte in fig. 1. It will be geen it B glance that its action depends on the expansion of bodies by heat and on electricity. Fig. 1 is an apparatus shown complete in itself for the sake of illustration. Tho wire Cl , of au electric circuit is inserted into tho bulb of a thermometer 'I', fixed on the ceiling $\left(\mathcal{C}\right.$, of a room, and the other end, C_{11}, of the same into the top of the th rmomoter tube, projecting far ebough to correspond to a certain temperature to which it is desired to adjust the same, and which should be one that ts not renched under ordinary circumstances, but quickly pro. duced by of fire. If the mercury rises to touch the wire, 'if, the circuit is complete, the galvanic battery $B_{\text {, }}$ supplies power to the electro-magnet to attract its armature, A, which is one arm of a lever holding at its other extremity the pin of a faller weight, F, which is thus liberated, and fulls upon the lover, L, causing the other end of the same to rise, a pin on the rim, R, of the valve-wheel, which is being held by the lever, L, escapes from its hold, and revolves in the direction in which it is drawn by a weight, W, thus opening the valve V, in the pipe P, branching of in each room from the main pipr, M, and thas admits stean into the room until the valve is closed again, which may be done at pleasure if desired.

It is obvious that the number of the mometers in the same circuit can be multiplied ad labitum, care being taken that cach may form a carcuit independent of any other. It will be seen therefore, that one battery is suficient for any number of thermometers in one room, and for any numbor of rooms.

In figi. 2 and 3 we show plan and longitudinal section of a mill-room., to which the apparatus is applied. The thermometers, T, are fixed from 10 to 15 inches apart, the aperture, O, of tho branch-pipe, for the issuo of the steam being in the contre, and near the top of the room, with a deflecting-plate, D, below, to avuid a direct rush of stcam on any one standing under the opening at the time of diecharge. It is obvious, however, that no general rule can be laid down for these particulars, but that the number of thermometers, the position of the opening, 0 , se, will vary with circumstances ; the later should always be central, between any possible opuangs or escapes for bir or steam. Our arrangement shows an extra valve, V, between th. boiler and the main stean-pipe, worked by the same circuit, but it has its own apparatus, snd is so connected as to be actuated every time in additio , to the valve in the room in which contact has been made, in order to admit steam to the brauch valves A boiler is shown dotted, sumply to remiad the resder of the necessity of one beiug in or near the premi. ses. The rain steam-pipe is shown, 6 -inch hose, the branchpipe 4-inch. A steam-whistle is fitted to the former, in any convenient place, so as to give an alarm which is especially useful at night and other times when the hand, are away from mills, and to tell the watchman to mako more firo, but under the boiler, so as to geuerate more steam

The idea of the apparatus is at once simple and beantiful and as for its lability to get out of order we do not think it is more so, if as much, asan ordinary fire-engine. Should contact be made acudentally, for iustance, through lighturgg, the valve can at once bu closed by hand if it should happun during the time that the placo were attended; but ceen if this were not the case, not much damage could te done, the damping of the place and the goods it contained could not possibly be a serious thing.

The only thing which obstructs the adoption of this apparatus in cotton-mills and other concerns is, we imagine, the scepticinm of millowners io the cificiency of steam for the purpose of extinguishong fires, but the experiments which led the inventor to pateut the apparstus have so satisfied himand the firm in which he is a partuer, that they are now anxiously waiting for the off r of mill-rocms to be placed at their disposal to try both steam and the apparatus, at their cost and risk, aud to prove its utility practically, and on a large scale. We trust this opportuniey for trying an appliance which promases to be so very uscful, and likely to save a large amount of valuable property, will not long bu wanting. We commend it warmly to the attention of insurance offices as likely to prove of considersble value to them. We shall watch the trials with interest, although instances of success with steam are, as we havi suid, not wanting, while that there aroother people besides the uventor and makers of this apparal us, who have great fath in sterm, is shown by the fact that there are instances where

