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The best size of conduit is to be determined for a known 
value of the flow Q; that is, in Equation (4) Q is to be taken 
as constant. In this case,

D,—ko
n is determined. Each pair of points should be used and the 
value of n found. The values of n and k0 being known, k 
may be obtained from

d Q Di—k„ 
k=—: .—=0d s A"

Other methods could be used. The gist of the matter is 
that the accurate way is to make detailed estimates for sev
eral cross-sections and determine the constants from an

lrlw drdA 2A dW (5);~5s : ~dl =- 5s-ds 5s
With Q constant, a change in s can be offset by a change 

in either A or r, or in both; that is, either the size or the 
shape of the conduit can be varied to keep Q constant.

There is no way of expressing a general relation between 
A and r, but for any chosen shape, as, for example, a rect
angle or semi-circle, the area is proportional to the square 
of any linear dimension; that is,

ds

analysis of these estimates.
Two extreme cases simplify the formula : First, when the 

increment cost is proportional to the area, as in a heavy rock 
cut, then

(7a)D=k„+kA.
and, second, where the increment cost is proportional to the 
surface, or the wetted perimeter, as for a flume, thenw2

(6)A=ar2=wr=— (7b)D=k0+kA<>.5a
These are considered later.

If i represents the total rate of returns expected on all 
expenditures on the property, including interest, amortiza
tion and profit, then

The value of a, of course, varies, but for usual forms the 
differences are not great, and the influence of changes in a 
on the economical section is slight; in fact, it can be shown 
that for the best section

(8)I=iL (k„+kAn) 
gives the total returns from this investment, and a change 
ds in s calls for a change in returns of

A—aVr

for the conditions of Equation (7a). Table I. gives values 
for the conditions of Equation (7a). The accompanying dA

dI=niLkA""1 — ds (9)■f dsS™'»M dr, from Equation (5)îEî
2niLkA”

1 (10)isdi— —
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This saving, due to an increase in s, must be at least 
equal in value to the power lost, and indeed should exceed it 
by some margin; this margin can be included in the overall 
rate of return i, and therefore 

dl=mdp
Substituting in (11) from (10) and (3), there results 

5meQs=2kniA”
Substituting further from (6) and (4), namely,

and Q=Av,

= 5
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S_ C2r - C2(A/a)o.s ’ZZ 7/7l giving finally

2.5mea0-5z' (12)V*^n-0.5 =£ nikC2
This may also be written

2.5mea °-5 (13)Q3A(”+2-5) =
nikC2
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If
2.5mea0-5 (14)N=

(X) nikC2
thenFig. 2—Logarithmic Graph of Equation 18 for Values 

of Q from 100 to 10,000 Sec. Ft. (15)A (n+2-5) =NQ3
The best way to handle this equation for engineers is by 

logarithmic plotting. From (15)table gives value of a for the usual shapes, 
liminary calculations a=9 may be used.

The cost of a water conduit can be expressed as a con
stant, representing the cost of a large part of the prelimin
ary work and plant, plus an amount depending on the size 
and surface area. In general, the cost per foot may be ex
pressed by

For pre-
3log N (16)log Qlog A= -+ (n+2.5)(n+2.5)

When n is known, this can be readily plotted for any range 
of Q desired. As an illustration, assume:—

m=$10, e=0.67x0.085=0.057 
i=0.15, C=120D=k0+kA“...............

where D=cost per foot, dollars
ko=constant part of cost per foot 
k —a constant

(7)
then

10"3x2N=
nk

n =an exponent whose value lies between 1 and 0.5.
In any specific case, when all the conditions are known, 

estimates of the total cost per foot of the conduit should be 
made for three or more different cross-sections; plotting 
these values will enable both k and n to be determined.

For example, let Fig. 1 represent the cost per foot for a 
certain conduit; then ko is given at once by the curve, and 
from

If, further, n=0.75 and k=$0.10,
n=10-=x2.67

and
log 10-2X2.67 +0.925 log Q

= -0.485+0.925 log Q...........
(Concluded on page 559)

log A=
3.25

(18)


