$$
\text { Therefore, } \mathrm{C} \Omega=\frac{\mathrm{W}}{\mathrm{~g}}\left(\mu_{1} \mathrm{p}_{1}-\mu_{2} \mathrm{p}_{2}\right) \Omega \text {. }
$$

In a turbine designed for maximum efficiency u_{2} should be zero; i.e., water should have no component in a direction perpendicular to radius of wheel, and then

$$
\mathrm{C} \Omega=\frac{\mathrm{W}}{\mathrm{~g}} \mu_{1} \mathrm{p}_{1} \Omega
$$

Now $p_{1}=$ radius of wheel at inlet. Therefore, $p_{1} \Omega=$ $\mathrm{V}_{1}=$ velocity of rim of wheel at inlet.
W

Therefore, work done $=\frac{-}{\mathrm{g}} \mu_{1} \mathrm{~V}_{1}$.
Now let $Q=$ volume of water passing per second.

$$
\mathrm{H}=\text { available head for turbine. }
$$

and $w=$ weight per unit volume of water $=62 . \mathrm{A}$ pounds per cubic foot.
Then $\mathrm{W}=\mathrm{Q} \mathrm{w}$,
and work done $=\frac{Q w}{g} V_{1} w_{1}$
Also work supplied $=\mathrm{Q}$ w H .
Therefore, $\mathrm{E}=\frac{\mathrm{Qw} \mathrm{V}_{1} \mu_{1}}{\mathrm{~g} \text { QwH}}=\frac{\mathrm{V}_{1} \mu_{1}}{\mathrm{gH}}$
Where $\mathrm{E}=$ the Hydraulic Efficiency μ_{1} is often called the "velocity of whirl."

When a turbine is to be designed, the available head $=\mathrm{H}$ is known in advance. The preliminary assumptions usually

made are the volume of water passing per second, the angular velocity of wheel (or radius of wheel), breadth of wheel at inlet, and the circumferential velocity v_{1}. As the best speed of wheel partly depends on frictional losses, v_{1} is often made $=0.6 \sqrt{2 \mathrm{gH}}$.

The following empirical values have been justified by experience:-
[varies from 0.6 to $0.8, V_{1}=0.6 \sqrt{2 g H}$ and $A_{1}=A_{2}$

$$
\stackrel{p}{1}_{\mathrm{p}_{1}}
$$

$\mathrm{p}_{1} \mathrm{~L}^{2} f_{1}=$ velocity flow at inlet.
$\mathrm{f}_{2}=$ velocity flow at outlet.
$\therefore \mu_{1}=$ velocity whirl at inlet.
$\mu_{2}=$ velocity whirl at outlet.
$\mathrm{x}_{1}=$ abs. velocity jet at inlet.
$\mathrm{x}_{2}=$ abs. velocity jet at outlet.
A_{1} and $A_{2}=$ areas at inlet and outlet, respectively.
$\mathrm{V}_{1}=$ velocity rim of wheel at inlet.
$\mathrm{V}_{2}=$ velocity rim of wheel at outlet.
$Q=$ volume passing in cubic feet per second.
$\mathrm{w}=$ weight per unit volume $=62.4$ pounds per cubic foot.
\& α and $\beta=$ angles between abs. velocity jet and velocity wheel rim at inlet and outlet, respectively.
4) b_{1} and $b_{2}=$ breadth wheel perpendicular to paper at inlet
and outlet.
p_{1} and $p_{2}=$ radii at inlet and outlet.
The turbine, to be of maximum efficiency, necessitates: (1) No shock when water enters wheel, and (2) the water to leave the turbine radially.

To obtain (I) we must have $\mu_{1}=V_{1}$, and for (2) $\mu_{2}=0$. Also $f_{1}=f_{2}$ (neglecting friction on vane).
The work done per pound of water from equation

$$
\begin{equation*}
(3)=\frac{V_{1} \mu_{1}}{g} \tag{6}
\end{equation*}
$$

$\mathrm{f}_{2}{ }^{2}$
and work lost at exit per pound water $=\frac{-}{2 g}$
Then $H=\frac{V_{1} \mu_{1}}{g}+\frac{f_{2}{ }^{2}}{2 g}$
And since $\mu_{1}=V_{1}$,
Therefore, $H=\frac{V_{1}{ }^{2}}{g}+\frac{f_{2}{ }^{2}}{2 g}$
Since $\Omega=$ augmented velocity of wheel, $\mathrm{V}_{1} \quad \mathrm{~V}_{2}$
therefore, $\Omega=-=-$

$$
\mathrm{p}_{1} \quad \mathrm{p}_{2} .
$$

Therefore, $\mathrm{V}_{2}=\frac{\mathrm{p}_{2}}{-} . \mathrm{V}_{1}-0.6 \mathrm{~V}_{1}$ say.
p_{1}
Thus $\mathrm{p}_{1}, \mathrm{p}_{2}$ and V_{2} are obtained.
X_{1} is obtained from the equation $\frac{Q}{-}=X_{1}$.

Where $A_{1}=2 \pi p_{1} b_{1}-n b_{1} t=b_{1}\left(2 \pi p_{1}-n t\right)$,
and $n=$ number of vanes (previously selected),
$\mathrm{t}=$ thickness of vanes: $1 / 4-\mathrm{in}$. to $3 / 8$-in. for steel and $1 / 2-\mathrm{in}$. when cast.
And since (see Fig. 2) $\frac{\mu_{1}}{X_{1}}=\cos \alpha$,

