curve of the middle span to shorten 0.0423 feet, and as a result the centre of the lower cables to rise $\frac{15}{100}$ feet, making the total deflection $62\frac{32}{100}$ feet. The difference between the total deflections of the lower and upper cables will then be $10\frac{2}{100}$ feet, or but onefourth of an inch in excess of the mean difference. We learn, therefore; that the transfer of only 18 tons gross ($=20\frac{16}{100}$ net tons) to each upper cable, is sufficient to counteract the effect of a temperature of 20° below zero.

It remains yet to be shown, what the actual strain in the upper cables will be under these conditions; and here I will use the load assumed by Mr. Wasell. He places

The total dead load at
Load on each of four cables if all bear alike then — 382 tons. Add the load transferred to each upper cable at 20° below zero 20 "
Total load on each upper cable
Total tension resulting from this load will be 402×1.95
Ultimate strength of one cable

Consequent factor of safety $= \frac{2657.6}{788} = 310$

This is a very different matter from the low factor given by Mr. Wasell, viz., $2\frac{2}{10}$, and shows that even when we assume the *monstrous load he has given*, we find the bridge to be safe; the total excess in strain caused by a change from mean to extreme temperature