nitrogen trioxide and nitrogen dioxide can dissociate or react with water to form nitric acid (HONO₂):

 $N_{2}O_{5} \rightarrow NO_{3} + NO_{2} \tag{6-7}$

 $N_2O_5 + H_2O \rightarrow 2HONO_2 \tag{6-8}$

Additional reactive pathways which can take place between oxygen atoms and NO₂ and NO include:

NO2	+	0(³ P)	→NO	+	02		(6-9)

$$NO_2 + O(^{3}P) + M \rightarrow NO_3 + M$$
 (6-10)

$$NO + O(^{3}P) + M \rightarrow NO_{2} + M$$
 (6-11)

Also, NO and NO₃ can react to regenerate NO₂:

 $NO_3 + NO \rightarrow 2NO_2$ (6-12)

Nitrous acid is produced by:

$$NO + NO_2 + H_2O \rightarrow 2HONO \qquad (6-13)$$

and may react bimolecularly to regenerate the original reactants:

HONO + HONO \rightarrow NO + NO₂ + H₂O (6-14) The unexcited and first excited electronic state of the oxygen atom are produced by ozone photolysis in sunlight:

 $O(^{1}D) + H_{2}O \rightarrow 2HO$

日日愛

182