7. (a). Factor
$$a^4 + 4b^4$$

 $a^4 + 4b^4 = a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2$
 $= (a^2 + 2b^2)^2 - (2ab)^2 = (a^2 + 2ab + 2b^2)(a^2 - 2ab + 2b^2)$
 $= (a^2 + 2ab + b^2 - i^2b^2)(a^2 - 2ab + b^2 - i^3b^2)$
 $= (a + b + ib)(a + b - ib)(a - b + ib)(a - b - it)$; where $i = \sqrt{-1}$. Or as follows—
 $a^4 + 4b^4 = a^4 - 4i^2b^4 = (a^2 - 2ib^2)(a^2 + 2ib^2)$
 $= [a^2 - (1 + i)^2b^2][a^2 - (1 - i)^2b^2]$
 $= [a + b(1 + i)][a - b(1 + i)][a + b(1 - i)][a - b(1 - i)]$. Factor $a^3 + b^3 + c^3 - 3abc$.

The factors of this are known, or should be known to every algebraist, as it constitutes an important fundamental form.

To factor it, however, we may do so as follows:—

The expression is homogeneous and symmetrical, so that if it has a linear factor it must be a + b + c. For a write -(b + c), and the expression vanishes.

a+b+c is a linear factor.

The quadratic co-factor must be homogeneous and symmetrical, and must be of the form $a^2 + b^2 + c^2 + (ab + bc + ca) m$, and

$$(a+b+c)(a^2+b^2+c^2+[bc+ca+ab]m)$$
 must be identical with $a^3+b^3+c^3-3abc$.

Comparing a term as a^2b , not found in the second expression, its coefficient from the first expression is 1 + m and is zero $\dots m = -1$, and the quadratic factor is

$$a^2+b^2+c^2-bc-ca-ab.$$

Factor $(1+y)^2 - 2x^2(1+y^2) + x^4(1-y)^2$.

The substitutions x = 1 and x = -1 cause this to vanish, and therefore $x^2 - 1$ is a factor. By division we find the other factor to be

$$x^{2}(1-y)^{2}-(1+y)^{2};$$

which being the difference of two squares is readily factored.

b. If $s = \frac{1}{2}(a+b+c)$, show that

$$(s-b)(s-c)+(s-c)(s-a)+(s-a)(s-b)=s^2-\frac{a^2+b^2+c^2}{2}$$

$$(s-b)(s-c) = s^2 - s(b+c) + bc.$$

$$(s-c)(s-a) = s^2 - s(c+a) + ca, \text{ by symmetry,}$$

and
$$(s-a)(s-b) = s^2 - s(a+b) + ab$$
.

. .
$$(s-b)(s-c) + (s-c)(s-a) + (s-a)(s-b) = 3s^2 - s.4s + \sum ab. = \sum ab - s^2$$
.
But $4s^2 = (a+b+c)^2 = \sum a^2 + 2 \sum ab$.

$$\therefore \sum ab = 2s^2 - \frac{1}{2}2a^2.$$

Whence, $\sum ab - s^2 = s^2 - \frac{1}{2} \sum a^2$, which establishes the required relation.

8. a. Find the square root of $x^4 + 4x^3y + 10x^2y^2 + 12xy^3 + 9y^4$.

(Note. By a typographical error the fourth term was printed "12xy"). x^2 and $3y^2$ are two terms of the root.

Assume $x^2 + axy + 3y^2$ to be the root. The term containing x^3y is $2ax^3y$. $\therefore 2a = 4$ and a = 2, and the root is $\pm (x^2 + 2xy + 3y^2)$.

(b). If $x^2 + px + g$, and $x^2 + mx + n$ have a common factor, to find the relation that exists among p, g, m, n.

There are many ways of doing this, the following is about the simplest: